

Introduction:

How important is cardio-oncology?

- Cancer-related death is one of the leading causes of death.
- Over the past few decades, mortality from cancer has decreased tremendously due to earlier diagnosis and novel treatments.
- Cardiac morbidity and mortality of cancer survivors has increased.
- Risk of death from cardiovascular causes exceeds that of tumor recurrence for many forms of cancer.

4

- Myocyte damage
- Left ventricular dysfunction and heart failure
- Thrombogenesis
- Ischemia and vasospasm
- Pericardial pathology
- Hypertension
- Conduction and rhythm disturbances

7

- Cytotoxic chemotherapy
 - Anthracyclines: doxorubicin, daunorubicin, epirubicin, and idarubicin
 - Alkylating agents: cyclophosphamide, ifosphamide, and melphalan
 - Microtubular Polymerization Inhibitors/Taxanes: paclitaxel and docetaxel
- Molecular targeted therapy
 - HER2-Targeted Cancer Therapies: Trastuzumab
 - VEGF Inhibitors: Tyrosine Kinase Inhibitors (sunitinib, sorafenib)
- Chest and mediastinal irradiation

Bloom MK, Circ HF 2016..

Cancer Therapy Related to Cardiotoxicity

Cytotoxic chemotherapy

- Anthracyclines: doxorubicin, daunorubicin, epirubicin, and idarubicin
- Alkylating agents: cyclophosphamide, ifosphamide, and melphalan
- Microtubular Polymerization Inhibitors/Taxanes: paclitaxel and docetaxel

Molecular targeted therapy

- HER2-Targeted Cancer Therapies: Trastuzumab
- VEGF Inhibitors: Tyrosine Kinase Inhibitors (sunitinib, sorafenib)
- Chest and mediastinal irradiation

Bloom MK, Circ HF 2016..

Anthracyclines: Cardiotoxicity

- Association between cumulative dosing and cardiotoxicity:
 - Diastolic dysfunction: 200 mg/m²
 - Systolic dysfunction: 400-600 mg/m²
- LV dysfunction can occur at any dose:
 - 18.9% of patients receiving a doxorubicin dose of 240 mg/m² in combination with cyclophosphamide
- Risk factors: CVD risk factors, mediastinal irradiation, concomitant therapy with agents eg. cyclophosphamide, paclitaxel and trastuzumab

Int J Cardiol. 2010;144:3-15.;Br J Cancer. 2004;91:37-44.; Curr Cardiol Rev. 2011;7:214-20.

Chemotherapy related cardiac dysfunction: Diagnosis

- Clinical CTRCD:
 - LVEF measured by cardiac imaging:
 - Echo, MUGA, MRI, PET/MRI etc.
- Subclinical CTRCD:
 - Global longitudinal strain
 - Serum troponin-I

2.7

Table 3 Percent changes in echocardiographic parameters in 6 months within the groups

	No cardiotoxicity	Cardiotoxicity	P
GLS	0.2 ± 8.6	11.4 ± 9.8	<.001
GLSR-S	-0.2 ± 16.8	12.8 ± 19.4	.009
GLSR-E	5.1 ± 21.2	-11.9 ± 14.5	.002
s'	-5.0 ± 18.9	-17.0 ± 23.9	.04
e′	3.5 ± 37.1	-10.0 ± 28.7	.09
GCS	-1.0 ± 29.7	9.3 ± 27.4	.18
GRS	8.3 ± 48.5	-10.0 ± 39.3	.11

GCS, Global circumferential peak systolic strain; GRS, global radial peak systolic strain.

Negishi K, et al. JASE 2013;26:493-8.)

Cardiac biomarkers: Troponin-I

Screening:

- Absence of troponin elevation in patients receiving high-dose anthracyclines: High NPV for CTRCD
- Troponin I levels at completion of anthracycline treatment: predict of subsequent reduction in LVEF and cardiac events

Risk stratification, monitoring:

- Increased troponin I in patients receiving trastuzumab:
 - Decrease likelihood of LVEF recovery
 - Higher incidence of cardiac events

Bloom MK, Circ HF 2016..

