342

Present and Future

Lakkana Suwannoi PharmD BCPS BCOP Division of Clinical Pharmacy Faculty of Pharmacy Mahidol University Bangkok THAILAND

Outline

- I. Cardiovascular disease & cancer therapy
 - a. The basic
 - b. Treatment related cardiovascular diseases
 - c. Integrated concept of CVD and cancer
- II. The future of Cardio- Oncology

The longevity of cancer survivors

Site	5 years survival		% :	
	1975 (%)	2007 (%)	% Increase	
Overall	50	67	17	
Childhood	30	79	49	
Prostate	67	99	32	
Breast	75	90	15	
Colon	51	65	14	
Lung	12	16	4	

www.pharmacy.mahidol.ac.th

Continuum of Cardio-Oncology care

www.pharmacy.mahidol.ac.th

Cancer therapies associated Cardiovascular Toxicities

Conventional Therapies

Novel (Targeted Therapies)

Cytotoxic	Hormonal	Signaling Pathways	Other targets	
Anthracyclines Doxorubicin, daunorubicin, epirubicin, Idarubicin	Androgen deprivation therapy Bicalutamide, enzalutamide,	Anti-HER-2 Trastuzumab Pertuzumab Lapatinib	Proteosome Inhibitors Bortezumib	
Fluoropyrimidines 5-fluorouracil, capecitabine, gemcitabine	abiterone Antiestrogen Tamoxifen	VEGF signaling Bevacizumab, Ramucirumab Sunitinib, Sorafenib, Axitinib, Regorafenib, Vandetanib	Immunomodulators Thalidomide, lenalidomide	
Microtubules inhibitors Docetaxel, paclitaxel		Anti-BCR-ABL TKIs Imatinib, crizotinib, dasatinib vemorafenib etc	HDAC inhibitors Vorinostat Depsipeptide	
Alkylating agents Cisplatin, cyclophosphamide		mTOR inhibitors Hypertension Myocardial ischemia	Others Asenic	

Spectrum of Cardiotoxicity

www.pharmacy.mahidol.ac.th

Lennamen CG. Circ Res 2016 Mar 18;118(6):1008-20.

Spectrum of Cardiotoxicities

Conventional Therapies

Novel (Targeted Therapies)

Cytotoxic	Hormonal	Signaling Pathways	Other targets	
Anthracyclines Cardiomyopathy, Heart failure	Androgen deprivation therapy Metabolic syndrome, VTE	Anti-HER-2 Cardiomyopathy Heart failure	Proteosome Inhibitors Arrythmia Hypertension	
Fluoropyrimidines Myocardial ischemia (reversible), Tachycardia	Anti-estrogen _{VTE}	VEGF signaling Hypertension VTE Hemorrhage	Immunomodulators _{VTE}	
Microtubules inhibitors Arrythmias		Anti-BCR-ABL TKIs	HDAC inhibitors	
Alkylating agents Myocardial ischemia		Pericardial effusion	Dyslipidemia Cardiomyopathy	
		mTOR inhibitors Hypertension Myocardial ischemia	Other Asenic – QTc prolongation	

Molecular mechanism of toxicity for targeted therapy

Left Ventricular Dysfunction

- Mechanism of toxicity
- LV dysfunction
 - Type I: anthracycline associated with radical species resulting in structural abnormality, apoptosis.
 - **Type II:** related to targeted therapy targeting Erb2 (HER2) causing mitochondria apoptosis resulting in failure of myofibril contractile element. Likely to be reversible if offending agents discontinued

Hypertension

- Mechanism of toxicity
 - Usually occurs within the first few weeks after therapy initiated
 - Associated with anti-VEGF
 - VEGF is known to increase the synthesis of nitric oxide (NO)
 - Therefore, decreased level of endogenous NO causing vasoconstriction
 - Also, up-regulation of baroreceptor function and increased vascular tone
 - May be an indicator of efficacy

Hemorrhagic Events/VTE

- Mechanism of toxicity
 - Associated with VEGF pathway
 - Nitric oxide (NO) maintains the integrity of endothelial cells
 - Activate platelets aggregation and degranulation to trigger thrombosis when drugs bind to Fc RII receptor
 - Risk factors included
 - Elderly
 - Past medical history of diabetes
 - Dose intensity

www.pharmacy.mahidol.ac.th

Risk factors to cardiovascular toxicities

- Baseline CV diseases
- Age (> 50 years old for trastuzumab, > 65 years old for anthracyclines)
- Family history of premature CV disease
- Diabetes, dyslipidemia, hypertension
- Smoking
- Obesity

- Prior cancer therapy history (e.g. radiation or pre-exposure to anthracyclines)
- Advanced cancer
- Site of cancer (for thromboembolism)
- Impaired organ function
- Concomitant drugs
- Alcohol consumption

Strategies to reduce toxicities

Strategies to reduce toxicities

Challenges in Cardio-Oncology

- Most data are from cancer clinical trials that excluded patients with history of CVD and metabolic disorders
- Toxicities assessments stop after drug discontinuation
- Toxicities can appear late and/or intermittently
- Essential to distinguish between treatment-related CVD and treatment – independent metabolic adverse effects

To sum up

- Increased number of cancer survivors worldwide
- Conventional and novel cancer treatments are associated with cardiovascular toxicities
- Baseline risk factors must be evaluated prior to initiate treatment
- Monitoring and better standardized assessment will help minimize CVD-associated cancer care

