
Samphant Ponvilawan Bumrungrad International

Definitions

Artificial circulation using VA ECMO as an alternative to ventilation and external cardiac massage

Indications

- Out-of-Hospital Cardiac Arrest (OHCA)
- In-Hospital Cardiac Arrest (IHCA)



Angelos 1990

Extracorporeal membrane oxygenation support can extend the duration of cardiopulmonary resuscitation*

Yih-Sharng Chen, MD; Hsi-Yu Yu, MD; Shu-Chien Huang, MD; Jou-Wei Lin, MD; Nai-Hsin Chi, MD; Chih-Hsien Wang, MD; Shoei-Shan Wang, MD; Fang-Yue Lin, MD; Wen-Je Ko, MD

Objectives: To evaluate the use of extracorporeal membrane oxygenation in prolonged cardiopulmonary resuscitation and to estimate how long cardiopulmonary resuscitation can be extended with acceptable results.

regure 2. Relationship between probability of survival-to-nospital discharge and cardiopulmonary resuscitation (*CPR*) duration. *ECPR*, extracorporeal membrance oxygenation for CPR.

Table 6. Comparison of conventional CPR groups with ECPR groups

In-Hospital Prolonged CPR (>10 mins)	No.	Duration, Mins (Mean \pm sp, Median)	Age, Yr (Mean ± sɒ, Median)	Survival (%)	p
C1, all causes	243	$35.3 \pm 23.9, 30^a$	56.0 ± 15.8, 59.5 (NS)	9.5 ^a	< 0.001
C2, cardiopulmonary origin	168	$36.2 \pm 24.2, 30^a$	$48.8 \pm 13.7, 53.5^{a}$	8.9 ^a	< 0.001
With ECMO (ECPR)	135	$55.7\pm27.0,50$	$54.0 \pm 15.7, 56.0$	34.1	

Main Results: The average cardiopulmonary resuscitation duration was 55.7 ± 27.0 mins and 56.3% of patients received subsequent interventions to treat underlying etiologies. The successful weaning rate was 58.5% and the survival-to-discharge rate was 34.1%. The majority of survivors (89%) had an acceptable neurologic status on discharge. Risk factors for hospital mortality included longer card IHCA n=135 ation duration, etiology of acute coronary s, IHCA, n=135 ation

Conclusion: Assisted circulation might extend the presently accepted duration of cardiopulmonary resuscitation in adult inhospital cardiopulmonary resuscitation patients. (Crit Care Med 2008; 36:2529–2535)

KEY WORDS: extracorporeal membrane oxygenation; cardiopulmonary resuscitation; in-hospital

Crit Care Med 2008; Vol 36 No.9:2529-35

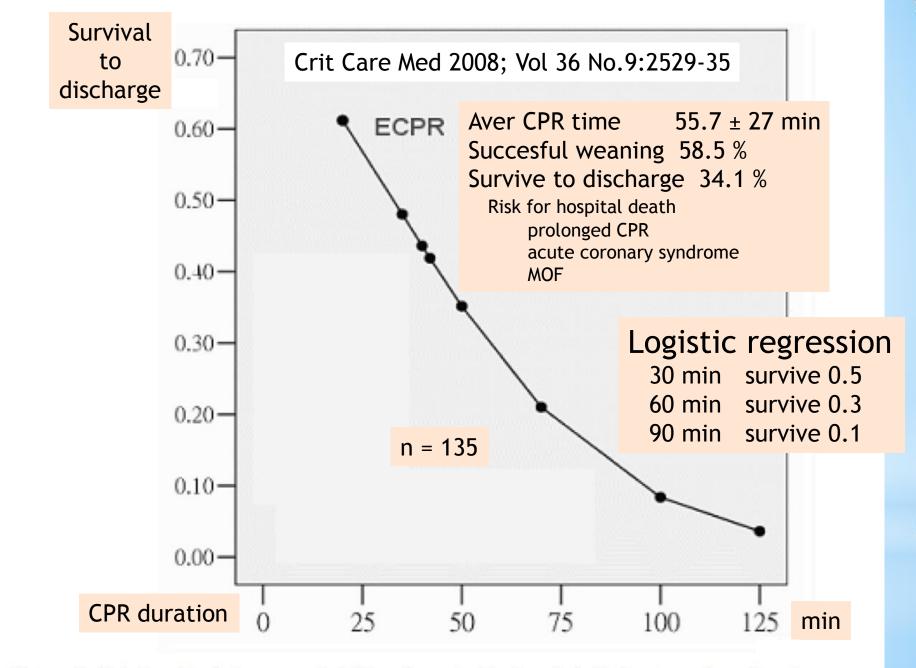


Figure 2. Relationship between probability of survival-to-hospital discharge and cardiopulmonary resuscitation (*CPR*) duration. *ECPR*, extracorporeal membrance oxygenation for CPR.

Table 6. Comparison of conventional CPR groups with ECPR groups

In-Hospital Prolonged CPR (>10 mins)	No.	Duration, Mins (Mean \pm sD, Median)	Age, Yr (Mean \pm sd, Median)	Survival (%)	р
C1, all causes C2, cardiopulmonary	243 168	$35.3 \pm 23.9, 30^a$ $36.2 \pm 24.2, 30^a$	$56.0 \pm 15.8, 59.5$ (NS) $48.8 \pm 13.7, 53.5^{a}$	9.5^{a} 8.9^{a}	<0.001 <0.001
origin With ECMO (ECPR)	135	55.7 ± 27.0, 50	54.0 ± 15.7, 56.0	34.1	_
			Surv	ival	
				n conventio	onal CPR

Curr Opin Crit Care. 2014 Jun;20(3):259-65. doi: 10.1097/MCC.000000000000098.

Extracorporeal cardiopulmonary resuscitation.

Fagnoul D¹, Combes A, De Backer D.

Author information

¹aDepartment of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium bService de Réanimation Médicale, Groupe Hôpital de la Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie, Paris, France.

Abstract PURPOSE OF REVIEW: To	ECPR in OHCA and IHCA (Belgium)	
RECENT FINDINGS: Return context, it has been propos hospital cardiac arrest (OH		ion (CPR). In this (IHCA) and in out-of-
SUMMARY: This review hig with survival rates good wit flow is a critical determinan min. Results of ECPR in OI that time from arrest to ECI seems to be a valuable opt PMID: 24785674 [PubMed - inde	 < 30 min survival 50 % 30 - 60 min survival 30 % > 60 min survival 18% OHCA survival rate 15-20 % provided that	n IHCA is satisfactory, cardiac arrest to ECMO 0 min, and 18% after 60 the patients, provided rdiac arrest. ECPR thus

Fagnoul D. Curr Opin Crit Care. 2014 Jun;20(3):259-65)

Resuscitation. 2014 Sep;85(9):1219-24. doi: 10.1016/j.resuscitation.2014.06.022. Epub 2014 Jun 30.

Improved outcome of extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest--a comparison with that for extracorporeal rescue for in-hospital cardiac arrest.

Wang CH¹, Chou NK², Becker LB³, Lin JW⁴, Yu HY⁵, Chi NH², Hunag SC², Ko WJ², Wang SS², Tseng LJ², Lin MH⁵, Wu IH², Ma MH⁶, Chen YS⁷.

Author information

¹Department of Cardiovascular Surgery, National Taiwan University Hospital, Taipei, Taiwan; Center for Resuscitation Science, Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan.

²Department of Cardiovascular Surgery, National Taiwan University Hospital, Taipei, Taiwan,

³ Center				- `	a, PA
19104,	ECPR IN C	HCA and IHC	A (Taiwan, n=230	0)	
⁴ Depar					
⁵ Depar					Y
Hospita ⁶ Depar		IHCA	OHCA	p	
⁷ Depar	n	199	31	•	
Abstra	Duration of ischemia	44.4±24.7 min	67.5±30.6 min	<0.05	
PURPC and cor	Duration of ECMO	94±122 hr	61±48 hr	<0.05	HCA)
METHC	Intervention post ECMO	50 %	50 %		last 5
years. F	Survival to discharge	31.2 %	38.7 %	>0.05	
RESUL	-				t
differen					±30.6
min, p< in the C	Survival rate 33 %	in both gr if dur	ation of ischemi	a < 75 min	Iration
p>0.05)		-			s when
the dur					
CONCL					нса
patients		Wang CH, Resus	citation. 2014 Sep;85(9):1219-24	
Copyrig	TIL @ 2014 LISEVIEL ITEIANU LIU. AII TIGHIS TESELVO	ы. 			

KEYWORDS: Cardiopulmonary resuscitation; Extracorporeal membrane oxygenation; In-hospital cardiac arrest; Out-of-hospital cardiac arrest

Crit Care. 2014 Sep 26;18(5):535. doi: 10.1186/s13054-014-0535-8.

An optimal transition time to extracorporeal cardiopulmonary resuscitation for predicting good neurological outcome in patients with out-of-hospital cardiac arrest: a propensity-matched study.

Kim SJ, Jung JS, Park JH, Park JS, Hong YS, Lee SW.

Abstract

INTRODUCTION: Prolonged conventional cardiopulmonary resuscitation (CCPR) is associated with a poor prognosis in out-of-hospital cardiac arrest (OHCA) patients. Alternative methods can be needed to improve the outcome in patients with prolonged CCPR and extracorporeal cardiopulmonary resuscitation (ECPR) can be considered as an alternative method. The objectives of this study were to estimate the optimal duration of CPR to consider ECPR as an alternative resuscitation method in patients with CCPR, and to find the indications for predicting good neurologic outcome in OHCA patients who received ECPR.

METHODS:

ECPR in OHCA (Korea)

based on the between the outcome in r **RESULTS:** (duration for CPR duratio age, witness and therape CONCLUSI prolonged C implantation improve the

confirmed tra Estimate the optimal duration of CPR to consider ECPR Predictors for good neurological outcome after ECPR Compare conventional CPR (444) with OHCA-ECPR (55) 1.Predicted duration for favorable neuro outcome (CPC1,2) is < 21 min CPR 2. More favorable neuro outcome in ECPR vs CCPR at 3 month

Predictor for good neurological outcomes

- PMID: 252558
- young age
- witnessed arrest without initial asystole •
- early achievement of mean BP \geq 60 mmHg
- therapeutic hypothermia
- low ECPR-related complications

Kim SJ. Crit Care. 2014 Sep 26;18(5):535

lic

of

er

ns.

RESUSCITATION

OFFICIAL JOURNAL OF THE European Resuscitation Council

Articles & Issues ~	For Authors ~	Journal Info ×	Subscribe	ERC ~	Related Sites	More Periodicals ~
	All Co	ontent		Search	Advanced Search	1
< Previous Article	Ja	nuary 2015 \	/olume 86, Pag	ges 88–9	4	Next Article >

Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial)

Dion Stub, Stephen Bernard 2, Vincent Pellegrino, Karen Smith, Tony Walker, Jayne Sheldrake, Lisen Hockings, James Shaw, Stephen J. Duffy, Aidan Burrell, Peter Cameron, De Villiers Smit, David M. Kaye

Altmetric 201

DOI: http://dx.doi.org/10.1016/j.resuscitation.2014.09.010

Article Info

Publication History Published Online: Septe

Published Online:September 30, 2014Accepted:September 11, 2014Received in revised form:August 22, 2014Received:November 20, 2013

ERC

CHER trial (single center, prospective)

Mechanical CPR + Hypothermia (33C) + VA ECMO + E

Early reperfusion

Age	38 - 60 Y	median 52 Y
Time to ECMO	40 - 85 min	median 56 min
Intervention		
PCI	11/26 (42%)	
P.embolectomy	1/26 (4%)	
Return of spontaneous cir	culation 25/26	96%
•		median 2 days
Successfully weaned ECM	O 13/24	54%
Survival to hospital discha	arge 14/2	54%
with full neurological re	covery	
	Time to ECMO Intervention PCI P.embolectomy Return of spontaneous cir Duration of ECMO support Successfully weaned ECMO Survival to hospital discha	Time to ECMO40 - 85 minInterventionPCIPCI11/26 (42%)P.embolectomy1/26 (4%)Return of spontaneous circulation 25/26Duration of ECMO support1 - 5 days

Stub D. Resuscitation 2015 Jan;86:88-94.

Indications : In-Hospital Cardiac Arrest (IHCA)

- Acute coronary syndrome AND
 likely to be reversible with cath lab treatment
- Cardiac arrest in cath lab
- Suspected massive pulmonary embolism
- Any reversibility cause

Indications : Out-of-Hospital Cardiac Arrest (OHCA)

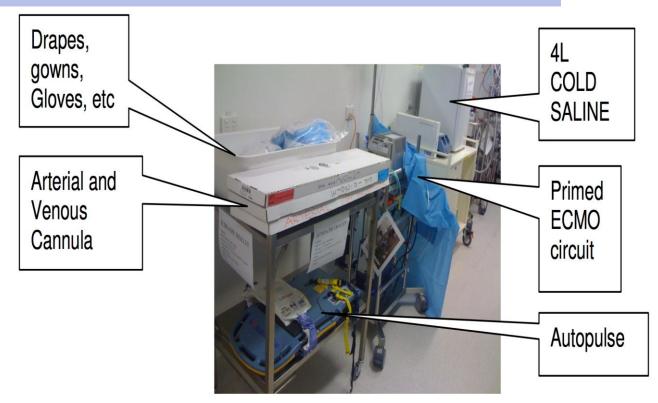
Suspected cardiac origin

Age < 60 years No flow < 10 min Initial rhythm VT/VF CPR >30min w/o ROSC

- Hypothermia <32C due to accidental exposure
- Drug overdose (vasoactive ie. Beta clocker, digoxin)
- Any reversibility of cardiac arrest

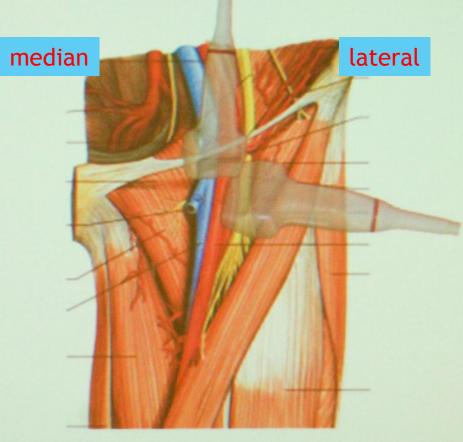
Exclusions

- Poor neurological recovery after CPR
 - Non witnessed OHCA
 - Initial cardiac rhythm was not VF
 - No provided neurological protection (hypothermia)
- Poor / non recovery underlying cardiac condition
- Limited of medical treatment that precludes further resuscitation
- Advanced age

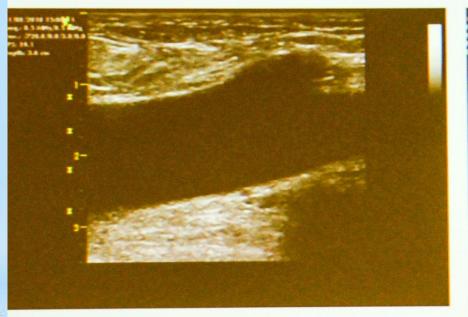

Cannula Size

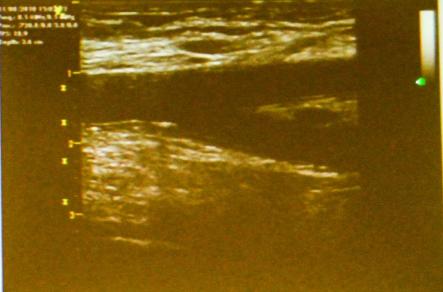
- Assess vessel size when first identified
- Vein will often disappear with handling
- Size arterial cannula first
- Don't go too big

Equipment


ECMO-CPR trolley

- Sterile drapes, instruments, gowns, gloves, Betadine, clamps
- 15F and 17F arterial cannulae
- 17F venous cannula
- Autopulse machine


Precannulation Assessment- Femoral Vessels



The Alfred Intensive Care Unit, Melbourne, Australia

Precannulation Assessment- Femoral Vessels

Long saphenous vein draining into Common Femoral Vein Common Femoral artery dividing into Superficial Femoral artery and deep femoral artery

The Alfred Intensive Care Unit, Melbourne, Australia

Precannulation Assessment

- Measure the diameter of the vessels in mm
- Multiply by a factor of 3 to get the size of the cannula in French.

Left CFA diameter = 4.3 mm Cannula size = 3 X 4.3 mm = 13 Fr

The Alfred Intensive Care Unit, Melbourne, Australia

Commencement of ECMO-CPR

- Ultrasound guided femoral vessels
- Venous guide wire must be imaged in the IVC
- Arterial guide wire must NOT be in the IVC
- Required skin incision for dilatation
- Smaller ECMO cannulae (15F arterial, 17F venous)
- Low ECMO flows (3-4L/min) during hypothermic arrest
- No femoral artery back-flow cannula at initial
- Hypothermia (32-34 C) is imperative

Maintenance

- Cardiac cause, transfer to cath lab
- Massive pulmonary embolism, thrombolysis / embolectomy
- Head injury, CT brain and C-spine
- Sedation and musle relaxant
- Leg ischemia, femoral artery back-flow cannula
- Hyperoxia (pO2>300mmHg) may be harmful during brain reperfusion
- Monitor bladder and nasopharyngeal Temp

Maintenance

Hypothermia

- hypothermia (33C) for 24 hr post cardiac arrest
- Rewarm no faster than 3C over 12 hr (0.25C per hr)
- Shivering (often at 34-35.5C) treat with muscle relaxant
- Hypotension treat with fluid challenge, vasopressor
- Cessation of rewarming if hypotension untreated

Respiratory

- Ventilator setting when cardiac function returns
- Target pO2 70-90mmHg, pCO2 40mmHg
- Use TV 6ml/kg, RR 8/min initial setting

Cardiac

- SBP >100mmHg, accept HR 35-50/min without treatment
- If need higher ECMO flow, consider second venous cannula

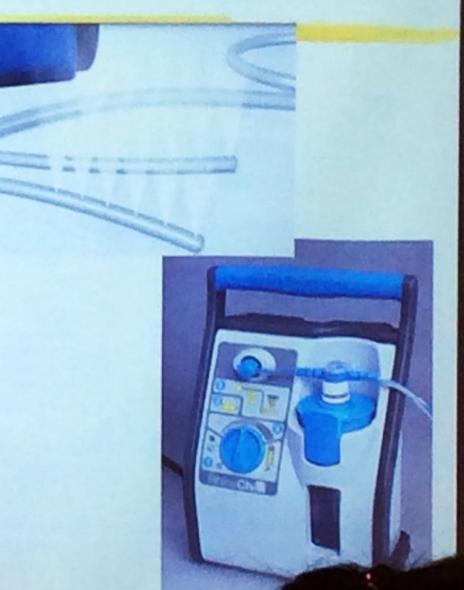
Maintenance

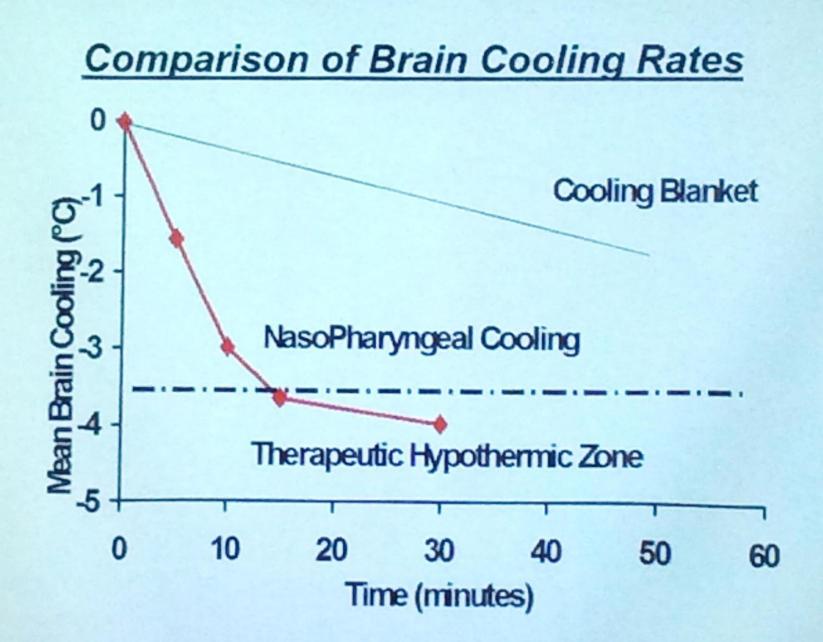
- Monitor electrolytes (K+, Mg++, PO4-)
- Avoid Calcium infusion in neurologic injury
- Hyperglycemia required insulin infusion
- Heparinize, ACT 180-220, APTT 50-70
- Sedation, midazolam if unstable BP

Prognostication

 Assessment of neurological recovery at 96hr (>48 hr after cessation of sedation)

AHA Guidelines. Circulation 2015;132:S436-443


Part 6: Alternative Techniques and Ancillary Devices for Cardiopulmonary Resuscitation 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care


2015 Recommendation—New

There is insufficient evidence to recommend the routine use of ECPR for patients with cardiac arrest. In settings where it can be rapidly implemented, ECPR may be considered for select patients for whom the suspected etiology of the cardiac arrest is potentially reversible during a limited period of mechanical cardiorespiratory support (Class IIb, LOE C-LD). Published

Early cooling easy to accomplish

RhinoChill is: Non-invasive Portable Technically simple No refrigeration Battery operated

Wolfson et al. NeuroCrit Care 8(3):437-47, 2008.

ECPR studies in OHCA

Author	Year of publication	N	Time to ECMO (min)	Survival
Nagao	2000	36	67	25 %
Haneya	2012	26	70	15 %
Kagawa	2012	42	59	24 %
Nagao	2010	171	66	12 %
Le Guen	2011	51	120	4%
Avalli	2012	18	77	6 %
Fagnoul	2013	53	66	21 %
Maekawa	2013	53	49	32 %
Leick	2013	28	44	39 %
SAVE-J Sakamoto	2014	260	-	12 %
CHEER	2014	11	Impl. 20	27%
Choi	2016	320	54	9%

Extracorporeal Life Support Organization (ELSO)

Guidelines for ECPR Cases

Introduction

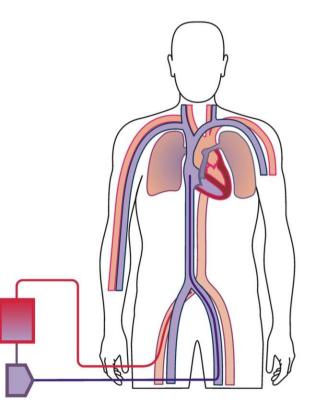
This ECPR guideline is a supplement to ELSO's "General Guidelines for all ECLS Cases" which describes prolonged extracorporeal life support (ECLS, ECMO). This supplement addresses specific discussion for ECPR cases.

This guideline describes prolonged extracorporeal life support (ECLS, ECMO). This guideline describes useful and safe practice, but these are not necessarily consensus recommendations. These guidelines are not intended as a standard of care, and are revised at regular intervals as new information, devices, medications, and techniques become available.

ELSO guidelines for ECPR (2013)

Patients selection

- Easily reversible event
- Return of spontaneous circulation in 5-30min
- Good perfusion and metabolic support documented


Vascular access

- Central (recent sternotomy)
- Peripheral
 - o prefer open
 - o percutaneous
 - BW > 15 Kg
 - Vascular access exists prior to CPR

Emergency VA ECMO

- Access:
 - Multistage (19-21F)
- Return
 - Single stage (15-17F)

ELSO guidelines for ECPR (2013)

Management

- Rapid cannulation
- CNS protection during and after CPR
 - Total body hypothermia for 48-72 hr after ECMO
 - Neurological exams after stable
- Evaluation of LA hypertension, decompression if indicated
- Diagnostic procedures if stable ECMO flows (ECHO, cardiac cath, imaging)

Weaning

- Institution's ECMO guidelines
- Long-term follow-up neurology / development pediatrics

ECLS Registry Report

International Summary July, 2016

Extracorporeal Life Support Organization 2800 Plymouth Road Building 300, Room 303 Ann Arbor, MI 48109

Overall Outcomes						
	Total Patients	Survive	ed ECLS	Survived	to DC	
Neonatal						
Respiratory	29,153	24,488	84%	21,545	74%	
Cardiac	6,475	4,028	62%	2,695	42%	
ECPR	1,336	859	64%	547	41%	
Pediatric						
Respiratory	7,552	5,036	67%	4,371	58%	
Cardiac	8,374	5,594	67%	4,265	51%	
ECPR	2,996	1,645	55%	1,232	41%	
Adult						
Respiratory	10,601	6,997	66%	6,121	58%	
Cardiac	9,025	5,082	56%	3,721	41%	
ECPR	2,885	1,137	40 %	848	30 %	
Total	78,397	54,866	70%	45,345	58%	