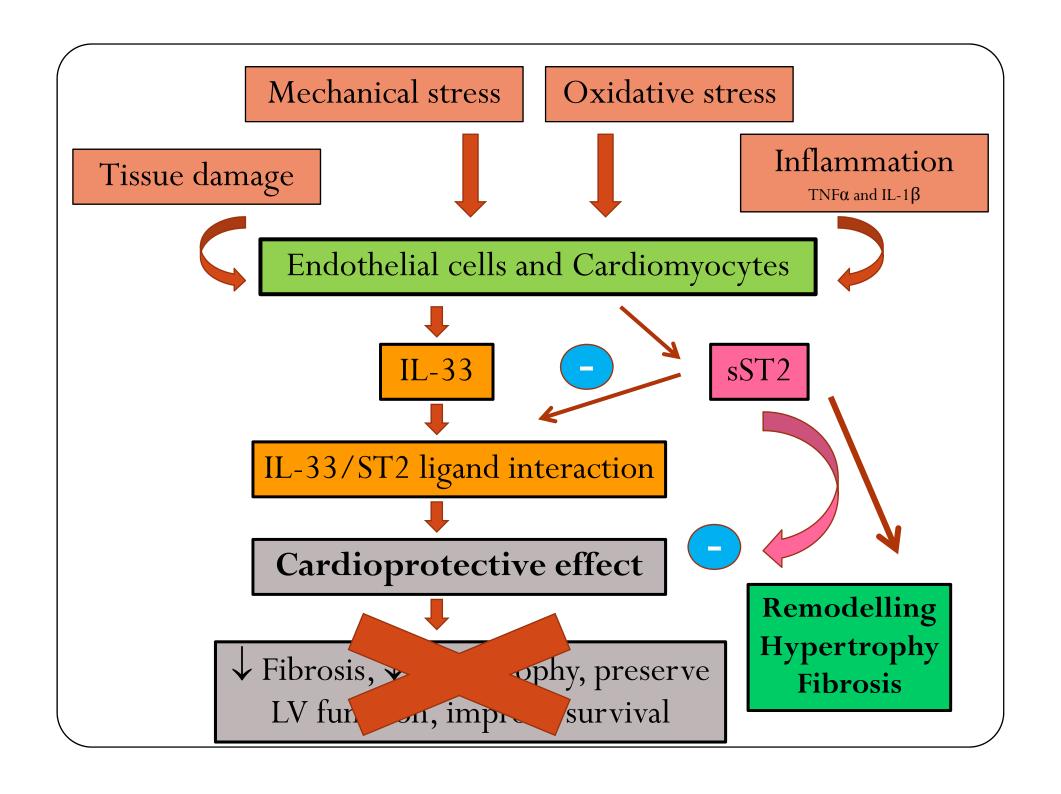
Correlation of novel cardiac marker and mortality in EGAT population.

Soluble ST2

hsCRP

Poh Chanyavanich, MD Sukit Yamwong, MD Piyamitr Sritara, MD Ramathibodi hospital

Background


- hsCRP the most widely studied biomarker in general populations.
- Secreted by liver and reflect inflammation from a variety of causes.
- hsCRP>3 mg/L predicts a higher risk for CHD events in asymptomatic subjects independent of Framingham risk factors

Ann Intern Med. 2009;151:483-95.

Background

• What is ST2?

- ST2 is a member of the interleukin-1 (IL-1) receptor family
- The ST2 gene encodes two isoforms:
 - ST2 ligand (ST2L)- transmembrane form
 - Soluble ST2 (sST2) circulating in human plasma

sST2 vs hsCRP

- More specific with cardiovascular system
- More information
 - Mechanical stress
 - Myocardial damage
 - Inflammation
 - Remodelling (fibrosis, hypertrophy)
- Therapeutic implication (aldosterone antagonist?)

Clinical Chemistry 58:12 1673–1681 (2012) Lipids, Lipoproteins, and Cardiovascular Risk Factors

Distribution and Clinical Correlates of the Interleukin Receptor Family Member Soluble ST2 in the Framingham Heart Study

Erin E. Coglianese, ¹ Martin G. Larson, ^{2,3,4} Ramachandran S. Vasan, ^{2,5} Jennifer E. Ho, ⁶ Anahita Ghorbani, ⁶ Elizabeth L. McCabe, ³ Susan Cheng, ^{2,7} Michael G. Fradley, ⁶ Dana Kretschman, ⁸ Wei Gao, ³ George O'Connor, ⁸ Thomas J. Wang, ^{2,6} and James L. Januzzi^{6*}

Age SST2 DM

Male HT

Clinical Chemistry 58:12 1673–1681 (2012) Lipids, Lipoproteins, and Cardiovascular Risk Factors

Distribution and Clinical Correlates of the Interleukin Receptor Family Member Soluble ST2 in the Framingham Heart Study

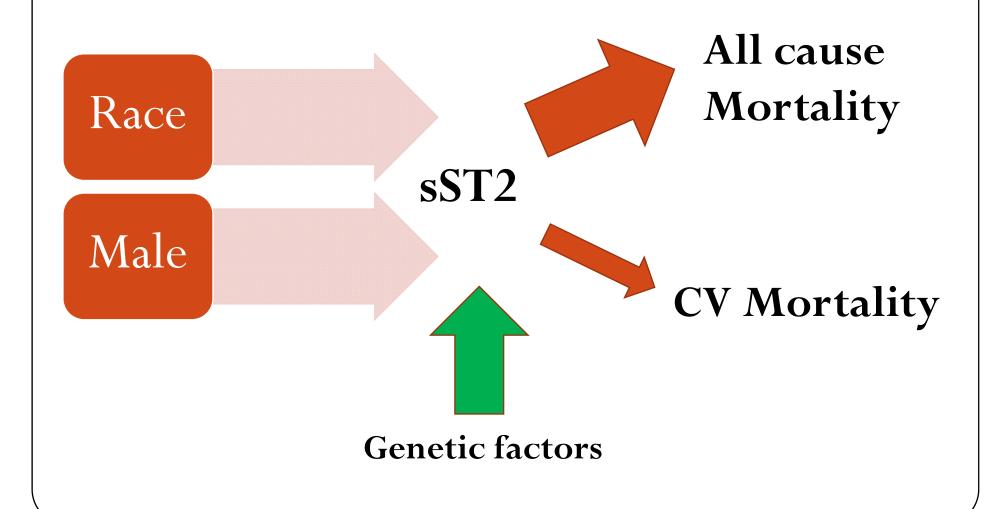
Erin E. Coglianese, ¹ Martin G. Larson, ^{2,3,4} Ramachandran S. Vasan, ^{2,5} Jennifer E. Ho, ⁶ Anahita Ghorbani, ⁶ Elizabeth L. McCabe, ³ Susan Cheng, ^{2,7} Michael G. Fradley, ⁶ Dana Kretschman, ⁸ Wei Gao, ³ George O'Connor, ⁸ Thomas J. Wang, ^{2,6} and James L. Januzzi^{6*}

Table 3.	Reference	limits fo	or sST2	(ng/mL)	by sex and	l age.

		Men, percentile			Women, percentile			
Age group, years	2.5th	50th	97.5th	99th	2.5th	50th	97.5th	99th
Empirical reference limits								
35–44	10.6	22.9	47.6	49.3	10.4	17.1	33.2	45.9
45–54	11.5	22.3	43.7	64.4	9.8	17.7	30.7	36.7
55–64	12.4	22.7	43.3	46.4	9.9	17.5	34.3	39.3
65–74	13.2	24.5	45.2	5 4.7	9.3	19.2	45.1	53.0
Quantile regression reference limits								
35–44	10.3	21.3	46.5	46.7	10.2	16.6	29.4	29.5
45–54	11.2	22.0	45.8	48.7	10.0	17.2	31.2	34.0
55–64	12.1	22.8	45.2	50.8	9.8	17.8	33.2	39.3
65–74	13.1	23.6	44.6	53.0	9.6	18.5	35.3	45.3

Papers in Press. Published December 7, 2012 as doi:10.1373/clinchem.2012.191106 The latest version is at http://hwmaint.clinchem.org/cgi/doi/10.1373/clinchem.2012.191106

Clinical Chemistry 59:3 000 – 000 (2013) Lipids, Lipoproteins, and Cardiovascular Risk Factors


Soluble ST2 Is Associated with All-Cause and Cardiovascular Mortality in a Population-Based Cohort: The Dallas Heart Study

Lu Q. Chen, ¹ James A. de Lemos, ^{1,2} Sandeep R. Das, ^{1,2} Colby R. Ayers, ^{2,3} and Anand Rohatgi ^{1,2*}

- sST2 concentrations do not correlate strongly with age or other traditional risk factors except for male sex.
- sST2 concentrations are remarkably higher in African Americans.

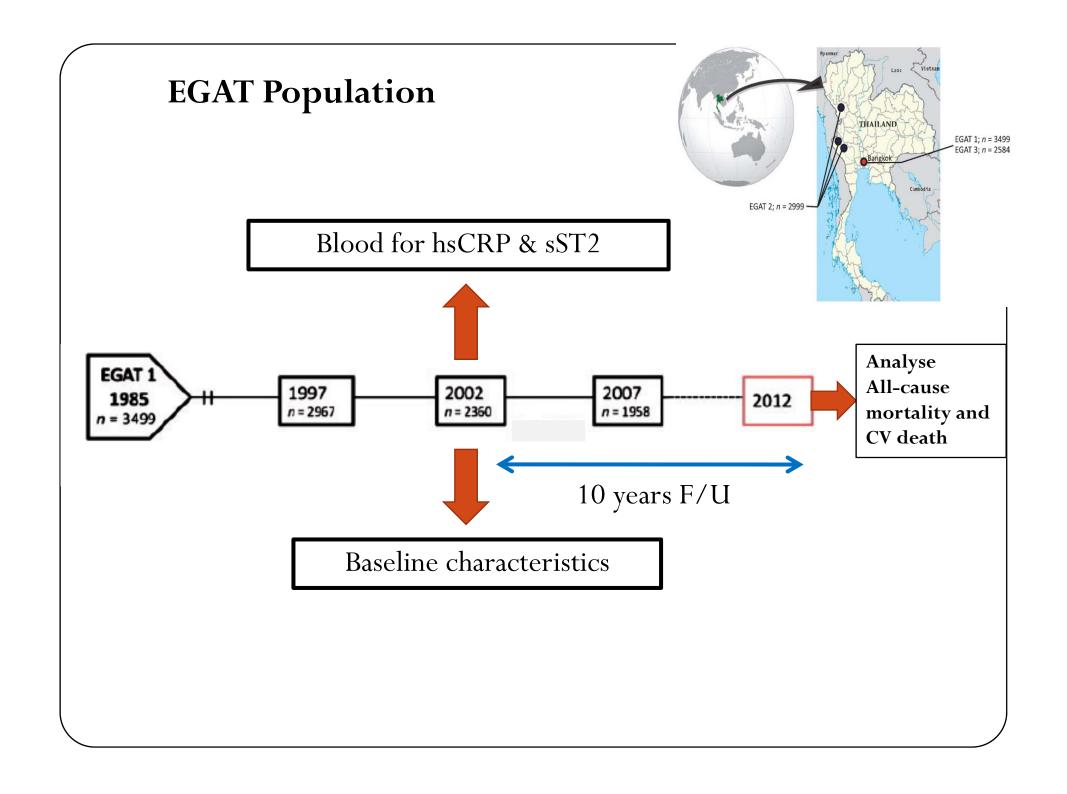
Soluble ST2 Is Associated with All-Cause and Cardiovascular Mortality in a Population-Based Cohort: The Dallas Heart Study

Lu Q. Chen, ¹ James A. de Lemos, ^{1,2} Sandeep R. Das, ^{1,2} Colby R. Ayers, ^{2,3} and Anand Rohatgi ^{1,2*}

Research Questions

• Can sST2 and hsCRP predict mortality in EGAT population ?

Primary objective


• To evaluate sST2 and hsCRP as a biomarker for mortality in EGAT population.

Secondary objective

• To evaluate the prognostic value of sST2 and hsCRP in CV death and CV events (MI, stroke, HF, revascularization) in EGAT population.

Types of the research designs

• Retrospective cohort from EGAT study

Research methodology

Participants in EGAT 1/3 in 2002

• N = 2,200

• Evaluate sST2 by a high-sensitivity assay for sST2 (Presage®, Critical Care Diagnostics, Inc., New York, NY, USA)

 Evaluate hsCRP by N high-sensitivity latex-enhanced immunonephelometric (BN 100 nephelometer, Dade Behring)

Inclusion criteria

- Participants from EGAT1/3 study
- Have frozen blood for measure both sST2 and hsCRP
- Have baseline characteristic data and general cardiovascular risk factors measurements.

Exclusion criteria

• Missing data such as inadequate frozen blood samples

STATISTICAL ANALYSIS

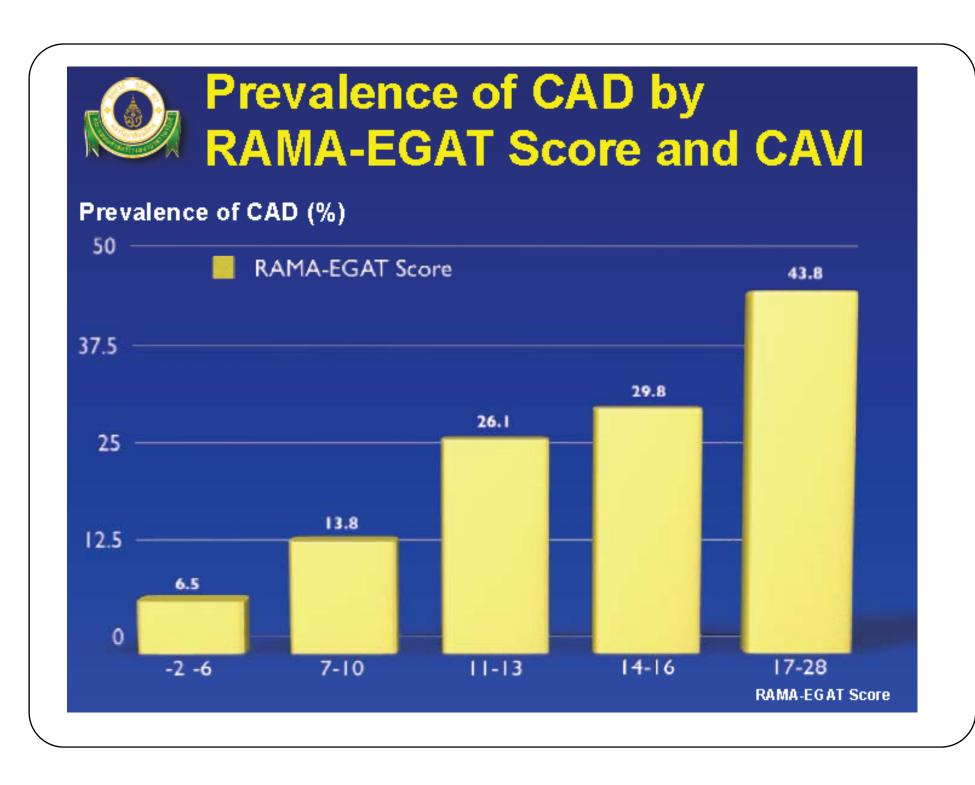
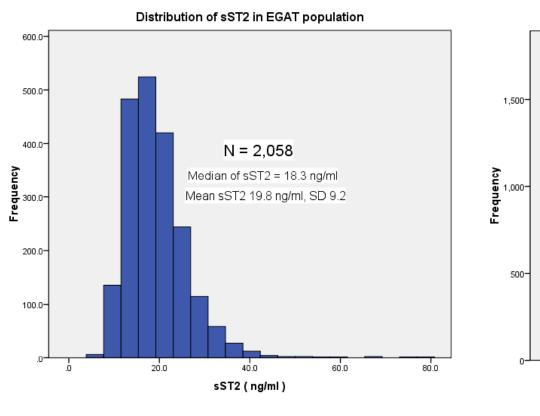
- The participants will grouped into quatile according to levels of hsCRP and sST2.
- Compared demographic and clinical variables across increasing sST2 categories.
- Survival analysis: Kaplan-Meier
- Cox proportional hazards models to assess associations between sST2, hsCRP and outcome.
- ROC curve: Compare with previous risk factors

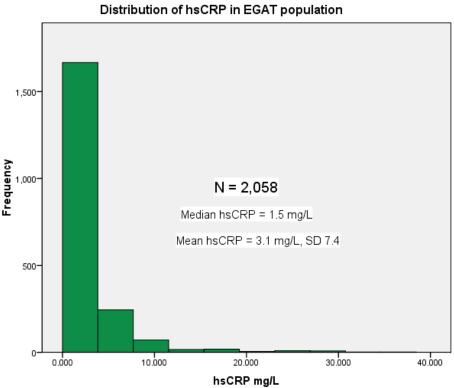
RAMA-EGAT Score

Score	-2	0	2	3	4	5	6	8	10
Age (year)	35-39	40-44	45-49		50-54		55-59	60-65	≥ 65
Gender		Female		Male					
Cholesterol (mg/dl)		<280				>280 or drug therapy			
Smoking		No	Yes						
Diabetes		No				Yes			
Hypertension		No		Yes					
Waist circumference*		Below		Above					

^{*} Waist circumference: male ≥ 36 inches, female ≥ 32 inches

Int J Epidemiol 2003;32:461-8.


Table 1. Baseline Characteristics

Characteristic	Total (n=2058)
Age	58.9±4.9
Male	1,559 (75.8%)
HT	661 (32.1%)
DM	308 (14.9%)
DLP	984 (47.8%)
Smoking	1,111 (54.0%)
Alcohol	1,047 (50.9%)
Weight (Kg.)	65.1±11.5
Waist circumference (cm.)	88.3±12.6

sST2 (median)	18.3±9.2 ng/ml
hsCRP (median)	1.5±7.4 mg/L

Figure 1 sST2 & hsCRP concentrations in EGAT population

Spearman's rho

Correlation coefficient between sST2 and hsCRP 0.007

Table 2. sST2 concentrations in men and women

Median sST2 (age 55-64)	Male	Female
EGAT	19.1	15.8
Framingham	22.7	17.5

Median hsCRP	Male	Female
EGAT	1.3	1.6
Framingham	1.81	2.38

Table 3. Clinical correlates with higher sST2 and hsCRP

Underlying	sST2
Male gender	P=0.008
History of diabetes	P=0.008
History of hypertension	P=0.131
History of dyslipidemia	P=0.508
History of smoking	P< 0.001

Table 4.

Demographic characteristics across increasing quatiles of sST2

sST2	Q1	Q2	Q3	Q4	Р
FBS (mg/dl)	104.6	108.2	108.3	115.8	<0.001
SBP (mmHg)	126.4	128.3	128.6	130.5	0.012
Weight (kg.)	63.2	64.8	65.8	66.7	<0.001
Waist circumference (cm.)	86.9	88.0	88.4	89.7	0.006
Creatinine (mg/dl)	0.96	1.00	1.04	1.10	<0.001
LDL (mg/dl)	154.5	156.1	149.5	151.7	0.097
HDL (mg/dl)	55.2	54.4	53.7	54.3	0.439

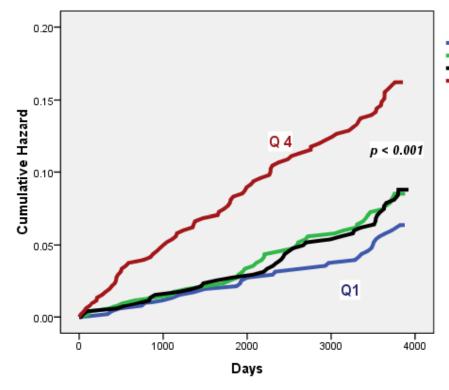
Table 5.

Demographic characteristics across increasing quatiles of hsCRP

sST2	Q1	Q2	Q3	Q4	Р
FBS (mg/dl)	103.4	107.4	109.5	116.7	<0.001
SBP (mmHg)	125.4	127.0	130.0	131.8	<0.001
Weight (kg.)	62.4	65.1	65.7	67.3	<0.001
Waist circumference (cm.)	85.1	87.7	89.1	91.2	<0.001
Creatinine (mg/dl)	1.03	1.02	1.02	1.03	0.792
LDL (mg/dl)	152.0	151.8	154.9	153.1	0.5
HDL (mg/dl)	58.8	54.4	53.1	51.2	<0.001
Triglyceride (mg/dl)	131.3	153.6	162.5	163.9	<0.001
Cholesterol (mg/dl)	238.4	237.8	244.4	241.4	0.06

Table 5. Incident events after 10 years follow up

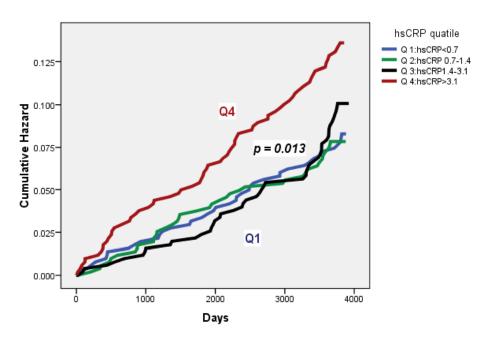
	Events			
	All-cause death	192 (9.3%)		
Death	Cardiovascular death (18.8%)	36 (1.7%)		
	Non cardiovascular death (81.2%) Malignancy (37.5%) Infection (13.4%)	156 (7.6%)		
	Combine CV events (Stroke, MI, CHF, CAG, Revascularization)			
Coronary	Coronary angiography	106 (5.2%)		
Intervention	Coronary revascularization	95 (4.6%)		

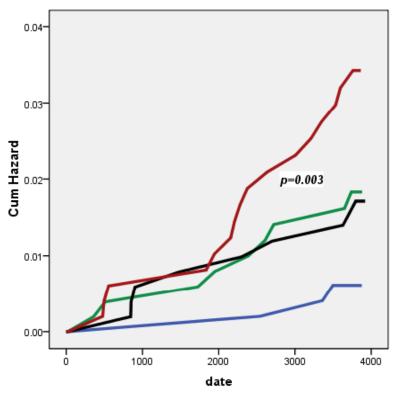

Table 6. Incident events (%) by sST2 categories

Quatiles of sST2									
	n	Q1 5.7-14.7	Q2 14.7-18.3	Q3 18.3-22.9	Q4 22.9-166.8	P value			
All-cause death	192	31 (16.1%)	42 (21.9%)	42 (21.9%)	77 (40.1%)	<0.001			
Cardiovascular death	36	3 (8.3%)	9 (25%)	8 (22.2%)	16 (44.4%)	0.021			
Noncardiovascular death	156	28 (17.9%)	33 (21.2%)	34 (21.8%)	61 (39.1%)	<0.001			

Table 7. Incident events (%) by hsCRP categories

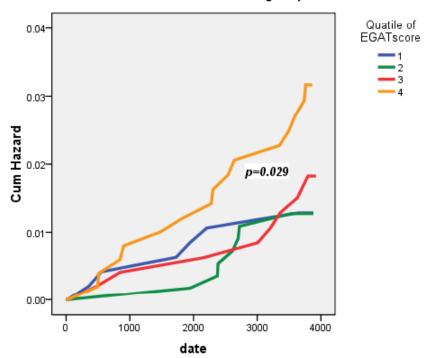
Quatiles of hsCRP								
	n	Q1 0.16-0.7	Q2 0.7-1.4	Q3 1.4-3.1	Q4 3.1-168	P value		
All-cause death	192	39 (20.3%)	39 (20.3%)	49 (25.5%)	65 (39.9%)	0.014		
Cardiovascular death	36	2 (5.6%)	11 (30.6%)	11 (30.6%)	12 (33.3%)	0.058		
Noncardiovascular death	156	37 (23.7%)	28 (17.9%)	38 (24.4%)	33 (34.0%)	0.028		

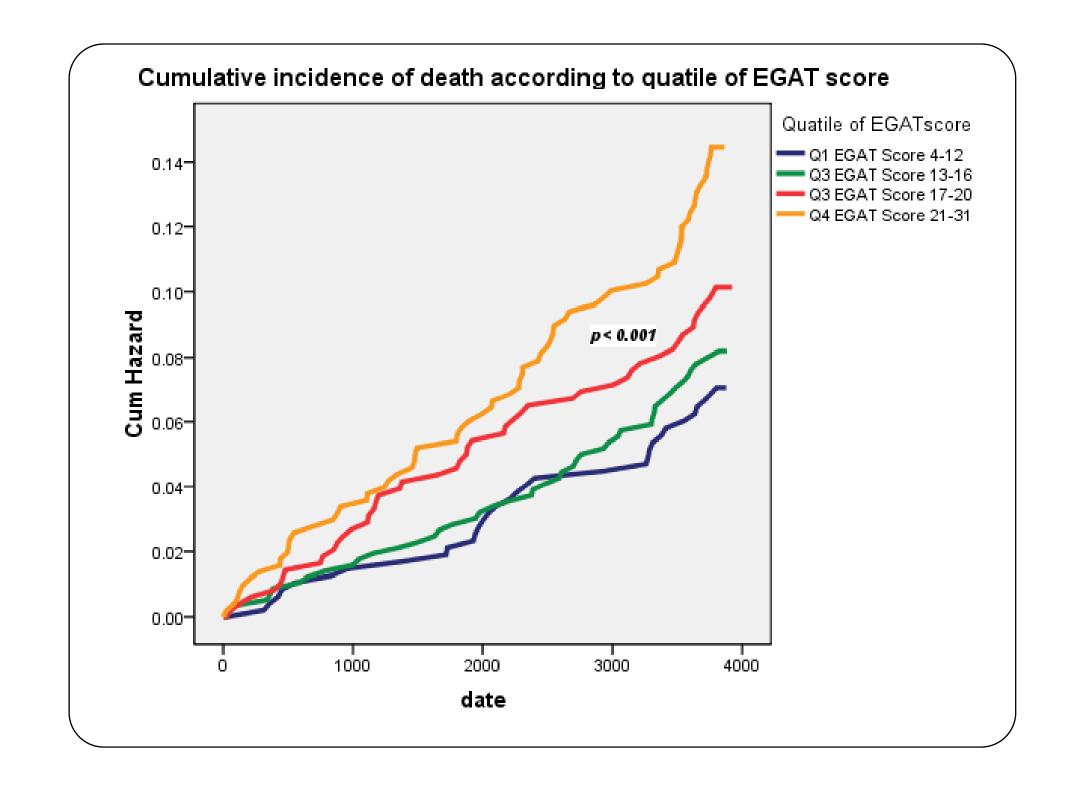

Cumulative incidence of death according to quatile of sST2

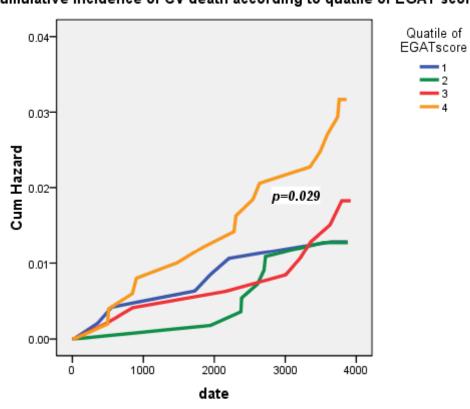


All Cause death

Cumulative incidence of death according to quatile of hsCRP


Cumulative incidence of CV death according to quatile of sST2



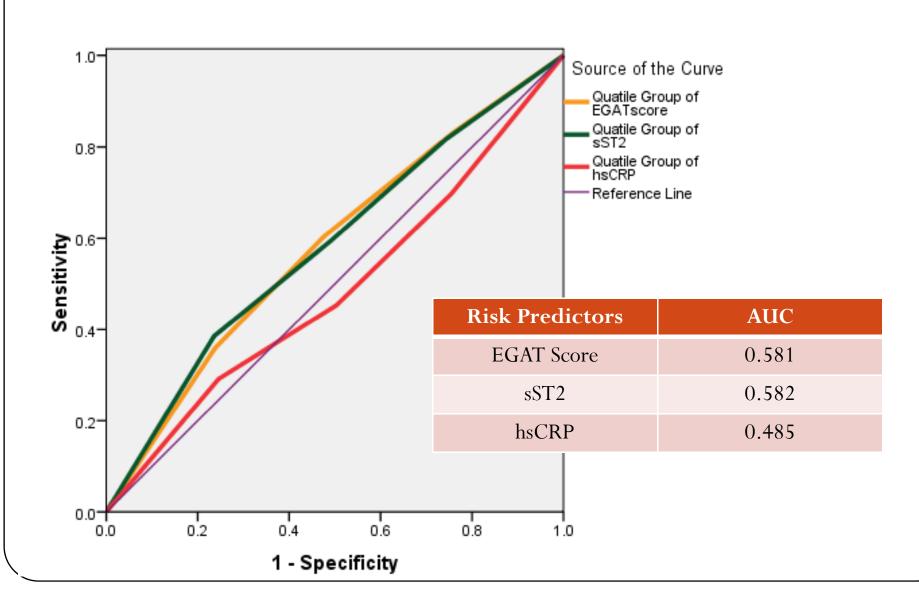

CV death

Cumulative incidence of CV death according to quatile of EGAT score

Cumulative incidence of CV death according to quatile of EGAT score

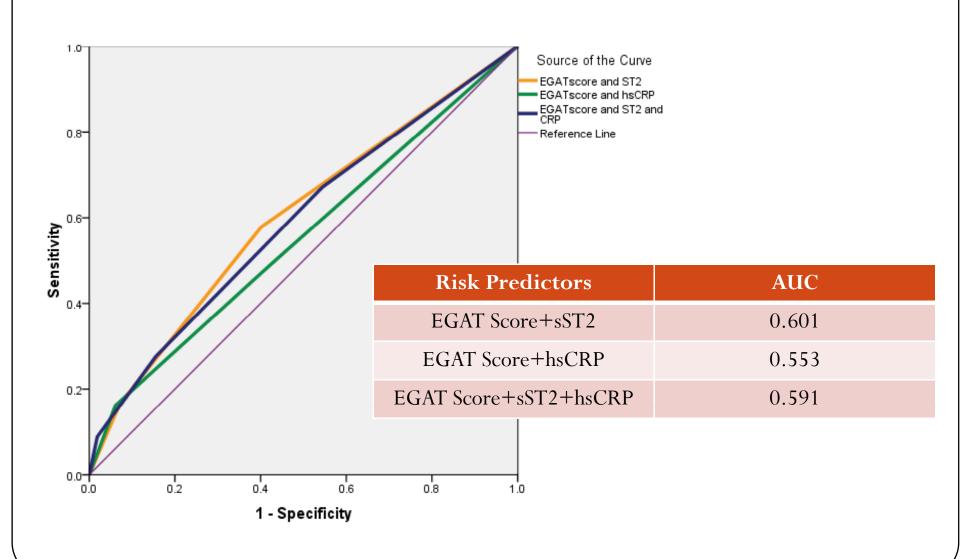
Table 8. Multivariable-Adjusted Hazard Ratio

Independent variable	Death	P	CV death	P
Age>64	1.61 (1.2-2.2)	0.004	1.60 (0.8-3.2)	0.193
Male gender	1.25 (0.8-2.1)	0.385	0.74 (0.3-2.0)	0.544
Smoking	1.67 (1.1-2.4)	0.007	1.20 (0.5-2.7)	0.653
Weight>72Kg.	0.97 (0.6-1.6)	0.901	1.17 (0.4-3.3)	0.770
Waist>95cm.	0.86 (0.53-1.4)	0.530	0.81 (0.3-2.3)	0.692
Underlying DM HT	1.65 (1.2-2.4) 1.20 (0.9-1.7)	0.005 0.280	1.78 (0.9-3.7) 1.59 (0.8-3.2)	0.124 0.192
hsCRP>3.1mg/L	1.22 (0.9-1.7)	0.250	1.08 (0.5-2.3)	0.832
sST2>23 ng/ml	1.81 (1.3-2.5)	0.000	2.28 (1.2-4.5)	0.018

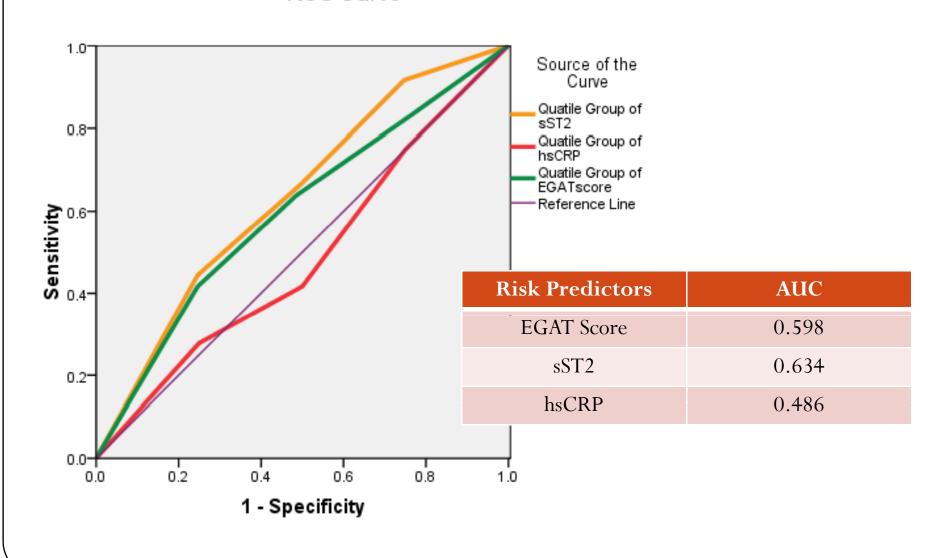

Table 9. Multivariable-Adjusted Hazard Ratio

Independent variable	Combine CV Event*	P
Age>64	0.99 (0.7-1.4)	0.964
Male gender	1.64 (1.0-2.6)	0.036
Smoking	1.03 (0.7-1.5)	0.867
Underlying DM HT	1.08 (0.7-1.6) 1.38 (1.0-1.9)	0.683 0.046
hsCRP>3.1mg/L	1.18 (0.8-1.6)	0.340
sST2>23 ng/ml	0.87 (0.6-1.2)	0.448

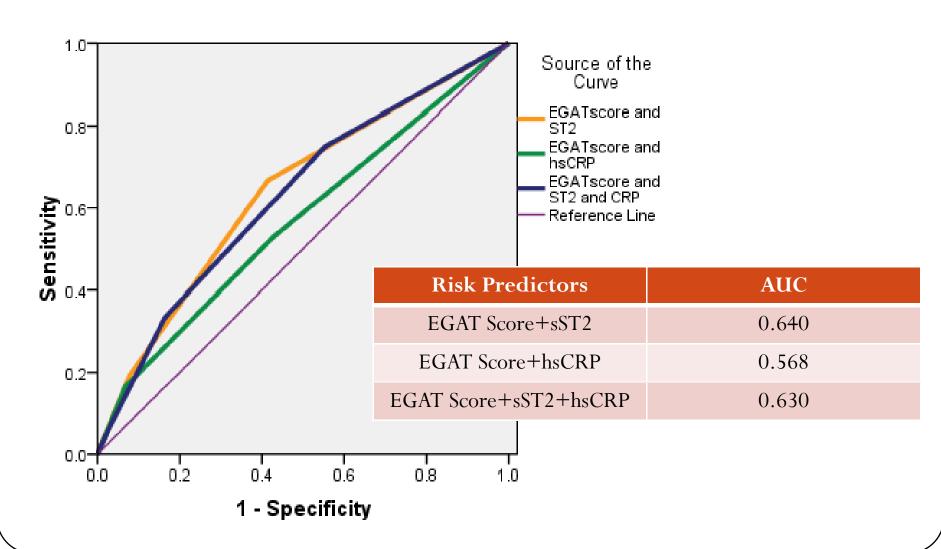
Combine CV Event: Stroke, HF, MI, CAG, Revascularization


All cause mortality

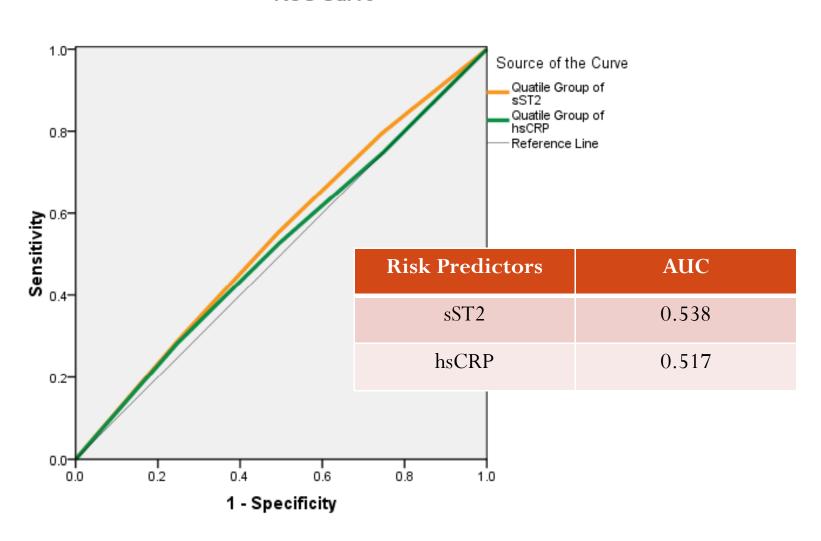
ROC Curve


All cause mortality

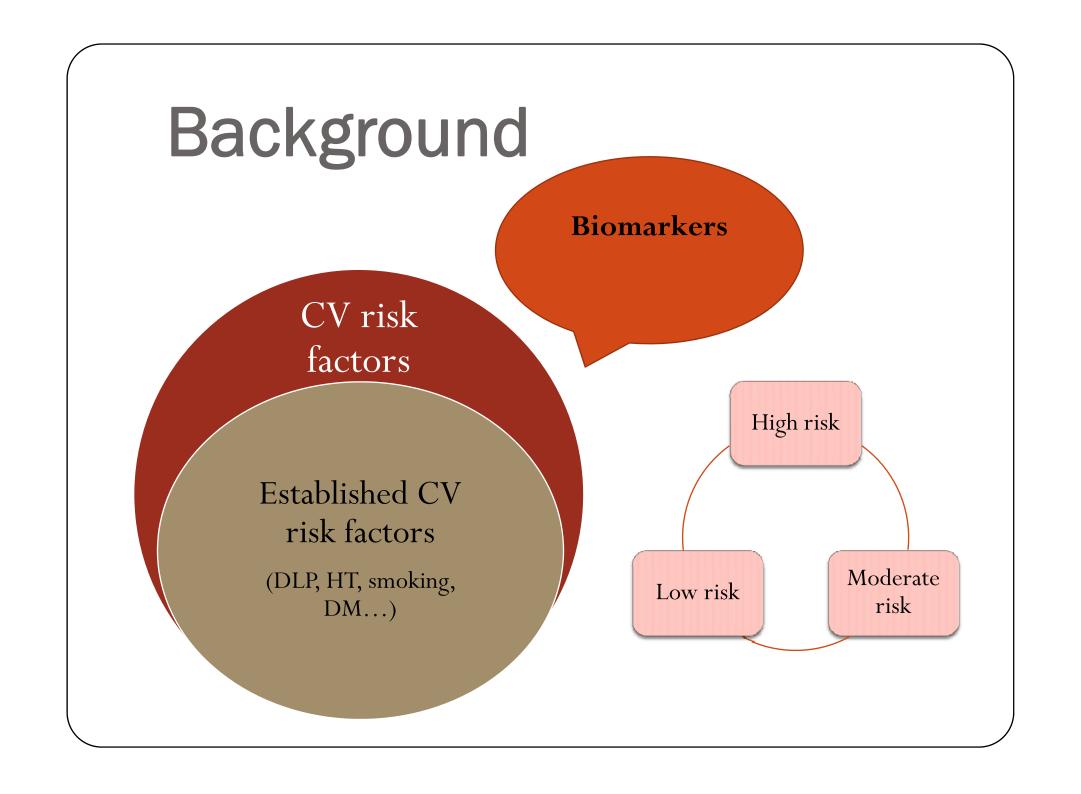
ROC Curve


Cardiovascular death

ROC Curve


Cardiovascular death

Combine CV death and CV event

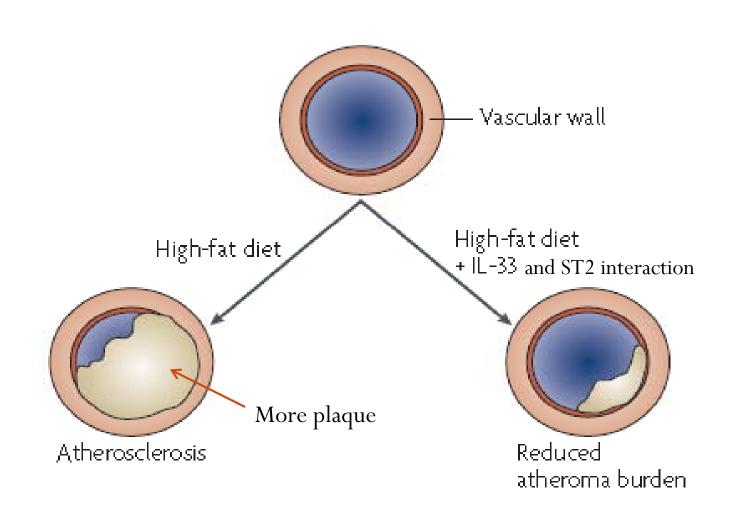


Conclusion

- DM, smoking, body weight, waist circumference and serum creatinine correlate with sST2 levels.
- sST2 appeared to be a better predictor of cardiovascular and all-cause mortality in Thai population than hsCRP.
- No correlation between sST2 and hsCRP.
- Multiple biomarkers for risk prediction is not indicated.

Thank you for your attention.

Background


- Guidelines recommends against the ficitive CRP as a risk marker in the general population of prediction. (Class III, Level of Evidence C).
 Men > 50, wome of CRP as a risk with moderate risk for CRP.
- Men > 50, wome with moderate risk for CVD are candidates. (City) of Evidence A).
- LD dL and hsCRP > 2 mg/L, fixed intensive-dose d the CVD events by 44% compared with placebo.

Circulation. 2003; 107:499-511

Can J Cardiol 2009;25(10): 567-579.

ACC/AHA 2013 Blood Cholesterol Guideline.

sST2 - Inflammation - Atherosclerosis

Background

- Novel biomarker should
 - More specific to cardiovascular system
 - Add another biological information
 - Add another clinical information
 - Potential new therapeutic approach

Soluble ST2