

Stroke and Bleeding Risk for AF

Thoranis Chantrarat MD. Phramongkutklao College of Medicine

Atrial Fibrillation (AF)

Atrial Fibrillation (AF)

al Fibrillation (AF)

al Fibrillation (AF)

AF and Risk for Stroke

The annual rate of ischemic stroke is approximately 5% among people with nonvalvular AF, 2 to 7 times that of people without AF

- The rate of brain ischemia (TIAs and "silent" strokes) exceeds 7%
- Long-term follow-up studies:

 In the Framingham study, people with rheumatic heart disease and AF had a 17-fold increase in stroke risk compared with age-matched controls and a 5-fold increase compared with those who had nonrheumatic AF

 Risk increases with age: in the Framingham cohort, annual attributable stroke risk was 1.5% for participants aged 50 to 59 years, 23.5% for those aged 80 to 89 years

Fuster V, et al. Circulation. 2006;114:257-354.

AF-RELATED STROKES ARE ASSOCIATED WITH GREATER DISABILITY AND A HIGHER MORTALITY RATE

Disability at clinical presentation¹

30-day post-stroke mortality²

1. Dulli DA, et al. Neuroepidemiology 2003;22:118-123. 2. Lin HJ, et al. Stroke 1996;27:1760-1764.

Strokes with AF (N=216) Strokes without AF (N=845)

Disability at clinical presentation¹

30-day post-stroke mortality²

1. Dulli DA, et al. Neuroepidemiology 2003;22:118-123. 2. Lin HJ, et al. Stroke 1996;27:1760-1764.

^aPatients not anticoagulated; ^bSecondary prevention. Hart et al. *Ann Intern Med. Ann Intern Med.* 2007;146:857-867.

Stroke Rates by Age in Patients With AF in Untreated Control Groups

The CHADS2 Index Stroke Risk Score for AF

	Score (points)	Prevalence (%)
Prior stroke or TIA	2	10
Age >75 years	/1	28
Hypertension	1 1	65
Diabetes mellitus	1	18
Heart failure	1	32
High risk	≥3	22
Moderate risk	1-2	33-50
Low risk	0-1	18-51

van Walraven et al. Arch Intern Med. 2003;163:936-943; Nieuwlaat et al. Euro Heart Survey. Eur Heart J. 2006 (Epub).

Risk Factors for Stroke and Systemic Embolism in Patients With Nonvalvular AF

Risk Factors	Relative Risk*			
Previous stroke or TIA History of hypertension CHF Advanced age (continuous, per decade) Diabetes mellitus	2.5 1.6 1.4 1.4 1.7			
Coronary anery disease	G.1			

- Age <75 yr and no risk factors, stroke risk = 1% annually
- Age <75 yr with hypertension or diabetes, risk 2.5% annually
- Age >75 yr with hypertension, risk 7.5% annually
- Age >75 yr with history of TIA or stroke, risk 13% annually

*Relative risk in comparison with patients with AF without these risk factors.

Ziv O, Choudhary G. Prim Care. 2005; 32:1083-1107.

Antithrombotic Therapy for Patients With AF

Risk Category		Recommended Therapy			
No risk factors One moderate-risk factor Any high-risk factor or mo 1 moderate-risk factor	ore than	Aspirin, 81 to 325 mg/d Aspirin, 81-325 mg/d, or warfarin (INR 2.0-3.0, target 2.5) Warfarin (INR 2.0-3.0, target 2.5)*			
Less Validated or Weaker Risk Factors	Moderate-R	Risk Factors	High-Risk Factors		
Female sex Age 65-74 y Coronary artery disease Thyrotoxicosis	Age ∍ Hypert Heart LV ejection fr Diabetes	≥75 y ension failure action ≤35% s mellitus	High-Risk Factors Previous stroke, TIA, or embolism Mitral stenosis Prosthetic heart valve		

*If patient has a mechanical valve, target INR is >2.5.

INR = international normalized ratio; LV = left ventricular; TIA = transient ischemic attack.

Fuster V, et al. Circulation. 2006;114:e257-354.

Stroke Risk Stratification

CHAD₂ criteria and score: 2 points for prior stroke or TIA; 1 point each for age >75 years, hypertension, diabetes mellitus, and heart failure.

Stroke Risk of Patients With Nonvalvular AF According to CHADS₂ Score*

CHADS ₂ Score	Patients (N = 1733)	Adjusted Stroke Rate (%/y) (95% CI)
0	120	1.9 (1.2 to 3.0)
1	463	2.8 (2.0 to 3.8)
2	523	4.0 (3.1 to 5.1)
3	337	5.9 (4.6 to 7.3)
4	220	8.5 (6.3 to 11.1)
5	65	12.5 (8.2 to 17.5)
6	5	18.2 (10.5 to 27.4)

*Patients not treated with anticoagulation. Adjusted stroke rate derived from multivariate analysis assuming no aspirin use. Data are from van Walraven WC, et al. *Arch Intern Med.* 2003;163:936-943; and Gage BF, et al. *JAMA*. 2001;285:2864-2870.

CHADS₂ = cardiac failure, hypertension, age, diabetes, and stroke (doubled). Adapted from Fuster V, et al. *Circulation*. 2006;114:257-354. ¹⁰

Risk factors included in various stroke risk stratification schemes and published guidelines

Risk stratification schemes		Risk factor								
		Age	Female	Prior stroke or TE event	Hypertension	Heart failure	Diabetes	Vascular disease		
SPAF ¹¹⁶	1999	>75ª	√ ^a			_		_		
AF Investigators ¹¹⁷	1994	65–75; >75	_			_		_		
CHADS ⁴²	2001	≥75	_			\checkmark		_		
Framingham ⁶³	2003	\checkmark	\checkmark	\checkmark	\checkmark	_	\checkmark	_		
van Walraven ¹¹⁸	2003	_	_	\checkmark	\checkmark	_	\checkmark	\checkmark		
Rietbrock ⁴⁵	2008	\checkmark	\checkmark	\checkmark	_	_	\checkmark	_		
CHA ₂ DS ₂ -VASc ⁷¹	2009	65−74; ≥75	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Guidelines and consensus stateme	nts									
ACCP ⁶	2012	65–74; >75	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Canadian Guidelines ¹¹⁹	2010	≥75	_	\checkmark	\checkmark	\checkmark	\checkmark	_		
ESC ^{1,78}	2010, 2012	65−74; ≥75	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
RCPE consensus statement ¹²⁰	2012	65−74; ≥75	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Canadian Guidelines focused update ²⁷	2012	65–74; ≥75	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		

Journal of the American College of Cardiology © 2008 by the American College of Cardiology Foundation Published by Elsevier Inc.

FOCUS ISSUE: ATRIAL FIBRILLATION

Vol. 51, No. 8, 2008 ISSN 0735-1097/08/\$34.00 doi:10.1016/j.jacc.2007.09.065

Clinical Research

Atrial Fibrillation and Embolism

Comparison of Risk Stratification Schemes to Predict Thromboembolism in People With Nonvalvular Atrial Fibrillation

Margaret C. Fang, MD, MPH,* Alan S. Go, MD,*† Yuchiao Chang, PHD,‡ Leila Borowsky, MPH,‡ Niela K. Pomernacki, RD,† Daniel E. Singer, MD,‡ for the ATRIA Study Group

San Francisco and Oakland, California; and Boston, Massachusetts

Journal of the American College of Cardiology © 2008 by the American College of Cardiology Foundation Published by Elsevier Inc.

FOCUS ISSUE: ATRIAL FIBRILLATION

Vol. 51, No. 8, 2008 ISSN 0735-1097/08/\$34.00 doi:10.1016/j.jacc.2007.09.065

Clinical Research

Atrial Fibrillation and Embolism

Comparison of Risk Stratification Schemes to Predict Thromboembolism in People With Nonvalvular Atrial Fibrillation

Margaret C. Fang, MD, MPH,* Alan S. Go, MD,*† Yuchiao Chang, PHD,‡ Leila Borowsky, MPH,‡ Niela K. Pomernacki, RD,† Daniel E. Singer, MD,‡ for the ATRIA Study Group

San Francisco and Oakland, California; and Boston, Massachusetts

assessed the predictive ability of these 5 risk stratification schemes when applied to a large, independent, community cohort of patients with AF.

Journal of the American College of Cardiology © 2008 by the American College of Cardiology Foundation Published by Elsevier Inc.

FOCUS ISSUE: ATRIAL FIBRILLATION

Vol. 51, No. 8, 2008 ISSN 0735-1097/08/\$34.00 doi:10.1016/j.jacc.2007.09.065

Clinical Research

San Francisco and Oakland, California; and Boston, Massachusetts

assessed the predictive ability of these 5 risk stratification schemes when applied to a large, independent, community cohort of patients with AF.

Risk Stratification Schemes

Risk Scheme	Low Risk	Intermediate Risk	High Risk
AFI	Age ${<}65$ yrs and no risk factors	Age $>$ 65 yrs and no other risk factors	Prior ischemic stroke or transient ischemic attack, history of hypertension, history of diabetes mellitus
SPAF	No risk factors	History of hypertension	Prior stroke, women older than 75 yrs, recent clinical heart failure, left ventricular fractional shortening ≤25% on echocardiography
CHADS ₂ †	Score 0	Score 1 to 2	Score 3 to 6
Framingham‡	Score 0 to 7	Score 8 to 15	Score 16 to 31
7th ACCP	Age <65 yrs and no other risk factors	Age 65 to 75 yrs and no other risk factors	Prior ischemic stroke, age >75 yrs, moderate to severe left ventricular dysfunction, history of hypertension, diabetes mellitus

Risk Stratification Schemes

The 7th ACCP guideline's categories of low-risk, intermediate-risk, and high-risk categories, corresponded to absolute thromboembolism rates of 0.13%, 0.89%, and 2.5% per year

Risk Scheme	Low Risk	Intermediate Risk	High Risk
AFI	Age ${<}65$ yrs and no risk factors	Age $>$ 65 yrs and no other risk factors	Prior ischemic stroke or transient ischemic attack, history of hypertension, history of diabetes mellitus
SPAF	No risk factors	History of hypertension	Prior stroke, women older than 75 yrs, recent clinical heart failure, left ventricular fractional shortening ≤25% on echocardiography
CHADS ₂ †	Score 0	Score 1 to 2	Score 3 to 6
Framingham‡	Score 0 to 7	Score 8 to 15	Score 16 to 31
7th ACCP	Age ${<}65$ yrs and no other risk factors	Age 65 to 75 yrs and no other risk factors	Prior ischemic stroke, age >75 yrs, moderate to severe left ventricular dysfunction, history of hypertension, diabetes mellitus

SP/

Risk Stratification Schemes

The 7th ACCP guideline's categories of low-risk, intermediate-risk, and high-risk categories, corresponded to absolute thromboembolism rates of 0.13%, 0.89%, and 2.5% per year

Risk Scheme	Low Risk	Intermediate Risk	High Risk
AFI	Age ${<}65$ yrs and no risk factors	Age $>$ 65 yrs and no other risk factors	Prior ischemic stroke or transient ischemic
			attack, history of hypertension, history of
			diabatas mollitus

A c-statistic of 1 indicates perfect discrimination, whereas a value of 0.5 indicates no discrimination

Proportion of ATRIA Cohort Categorized by 5 Risk Stratification Schemes Used to Predict Atrial Fibrillation–Related Thromboembolism and Discriminatory Ability of Risk Schemes (c-Statistics)

	Risk fo	or Thromboembolis	sm (%)	c-Statistic			
	Low	Intermediate	High	All Patients	Subgroup*		
AFI	13.1	24.7	62.3	0.56	0.61		
SPAF	27.7	28.5	43.8	0.60	0.65		
CHADS ₂	18.8	61.2	20.1	0.58	0.67		
Framingham	37.1	46.6	16.4	0.62	0.69		
7th ACCP	11.7	7.9	80.4	0.56	0.60		

Proportion of ATRIA Cohort Off Warfarin and Categorized by CHADS2 Scores, Stratified by Development of TE

Wednesday, October 23, 2013

Annual TE Rates Across Risk Groups Using 5 Risk Stratification Schemes Used to Predict AF-Related TE

Annual TE Rates Across Risk Groups Using 5 Risk Stratification Schemes Used to Predict AF-Related TE

Annual TE Rates Across Risk Groups Using 5 Risk Stratification Schemes Used to Predict AF-Related TE

ROC Curves for 5 Risk Stratification Schemes Used to Predict AF-Related Thromboembolism

Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp REVIEW

Stroke and Thromboembolism in Atrial Fibrillation

 Systematic Review of Stroke Risk Factors and Risk Stratification Schema –

Ron Pisters, MD, PhD; Deirdre A. Lane, PhD; Francisco Marin, MD, PhD; A. John Camm, MD; Gregory Y. H. Lip, MD

The present analysis aimed to systematically review (a) the independent risk factors for stroke in AF patients, (b) the published RSMs and (c) the published cost-effectiveness data of (new) oral anticoagulant and antiplatelet agents for stroke prevention in AF patients

Age as a risk factor

Study	n	Age risk factor	Stroke rate test	Stroke rate ref.	RR/OR/HR (95% CI)	P value
Cabin HS, 1990 ¹⁸	272	Age >70 vs. ≤70 years	13%	7%	NA (bivariate analysis)	NS
Petersen P, 1990 ³²	336	Correlation with increasing age	NA	NA	LR Enter 0.01	NS
Moulton AW, 1991 ²²	265	Age >75 vs. ≤75 years	NA	NA	OR 1.72 (1.04–2.84)	<0.05
SPAF Investigators, 1992 ⁴⁰	568	Incremental risk per decade	NA	NA	RR 1.2 (0.9–1.6)	NS
Laupacis A, 1994 ⁴ (AF Invest. 1994)	1,593	Incremental risk per decade	NA	NA	RR 1.4	<0.05
Van Latum JC, 1995 ²⁴	375	≥60–69 vs. <60 years	NA	NA	HR 0.8 (0.3–1.9)	NS
		≥70–79 vs. <60 years	NA	NA	HR 0.9 (0.4–2.1)	NS
		≥80 vs. <60 years	NA	NA	HR 0.6 (0.2–1.6)	NS
Ezekowitz M, 1998 ³⁴ (using clinical factors alone)	1,066	Incremental risk per decade	NA	NA	RR 1.5 (1.1–1.9)	0.008
Ezekowitz M, 1998 ³⁴ (using clinical and echo- cardio- graphic features)	1,010	Incremental risk per decade	NA	NA	RR 1.5 (1.1–2.0)	0.006
Nakagami H, 1998 ³¹	290	Incremental risk per decade	NA	NA	OR 1.33 (1.04–1.71)	NS
SPAF III, 199827	892	Incremental risk per decade	NA	NA	RR 1.7 (1.1–2.6)	0.01
Stollberger C, 199835	409	Correlation with increasing age	NA	NA	RR 1.1 (1.0–1.11)	<0.001
Hart RG, 1999 ²⁸	2,012	Incremental risk per decade	NA	NA	RR 1.8	<0.001
Hart RG, 2000 ²⁹ (paroxysmal AF)	460	Incremental risk per decade	NA	NA	RR 2.1	<0.001
Hart RG, 2000 ²⁹ (persistent AF)	1,552	Incremental risk per decade	NA	NA	RR 1.7	<0.001
Inoue H, 2000 ²⁰	740	Age >65 years	NA	NA	RR 3.33 (1.92-5.81)	0.0001
Wang TJ, 2003 ³⁶	705	Incremental risk per decade	NA	NA	HR 1.32 (1.02–1.76) (for stroke)	<0.05
		Incremental risk per decade	NA	NA	HR 2.13 (1.86–2.44) (for stroke or death)	<0.05
Stollberger C, 2004 ³³	409	Correlation with increasing age	NA	NA	RR 1.05 (1.02–1.09)	0.0006
Frost L, 2007 ¹⁹	141,493	Age 70–74 vs. 40–44 years (for men)	NA	NA	HR 6.31 (4.78–8.33)	<0.05
Ruigómez A, 2009 ²³	831	Age >80 vs. 40–59 years	NA	NA	RR 5.8 (1.9–17.6)	<0.05
Lip GYH, 2010 ¹⁵	1,577	Age >75 vs. ≤75 years	3.6%	1.8%	OR 1.46 (0.63–3.65)	NS
Hobbs FD, 2011 ³⁰	665	Incremental risk per 5 years	NA	NA	HR 1.26 (0.93–1.72)	NS
Lin LY, 2011 ²¹	7,920	Age ≥75 vs. 20–64 years	NA	NA	OR 1.652 (1.313–2.080)	<0.001
Van Staa TP, 2011 ²⁵	79,844	Age 50–59 vs. 60–69 years	NA	NA	RR 0.44 (0.28–0.69)	<0.05
		Age <50 vs. 60–69 years	NA	NA	RR 0.14 (0.06–0.34)	<0.05
		Age ≥80 vs. 60–69 years	NA	NA	RR 2.22 (1.78–2.76)	<0.05
		Age 70–79 vs. 60–69	NA	NA	RR 1.42 (1.12-1.78)	<0.05

Age as a risk factor

	Study	n	Age risk factor	Stroke rate	Stroke rate ref.	RR/OR/HR (95% CI)	P value	
	Cabin HS, 1990 ¹⁸	272	Age >70 vs. ≤70 vears	13%	7%	NA (bivariate analysis)	NS	
	Petersen P, 1990 ³²	336	Correlation with increasing age	NA	NA	LR Enter 0.01	NS	
	Moulton AW, 1991 ²²	265	Age >75 vs. ≤75	NA	NA	OR 1.72 (1.04–2.84)	<0.05	
Age >65 years	NA		NA			RR 3.33 (1.	92–5.	.81)
	Van Latum JC, 1995 ²⁴	375	≥60–69 vs. <60 vears	NA	NA	HR 0.8 (0.3–1.9)	NS	
			≥70–79 vs. <60 years	NA	NA	HR 0.9 (0.4–2.1)	NS	
			≥80 vs. <60 years	NA	NA	HR 0.6 (0.2–1.6)	NS	
	Ezekowitz M, 1998 ³⁴ (using clinical factors alone)	1,066	Incremental risk per decade	NA	NA	RR 1.5 (1.1–1.9)	0.008	
	Ezekowitz M, 1998 ³⁴ (using clinical and echo- cardio- graphic features)	1,010	Incremental risk per decade	NA	NA	RR 1.5 (1.1–2.0)	0.006	
	Nakagami H, 1998 ³¹	290	Incremental risk per decade	NA	NA	OR 1.33 (1.04–1.71)	NS	
	SPAF III, 1998 ²⁷	892	Incremental risk per decade	NA	NA	RR 1.7 (1.1–2.6)	0.01	
	Stollberger C, 1998 ³⁵	409	Correlation with increasing age	NA	NA	RR 1.1 (1.0–1.11)	<0.001	
	Hart RG, 199928	2,012	Incremental risk per decade	NA	NA	RR 1.8	<0.001	
	Hart RG, 2000 ²⁹ (paroxysmal AF)	460	Incremental risk per decade	NA	NA	RR 2.1	<0.001	
	Hart RG, 2000 ²⁹ (persistent AF)	1,552	Incremental risk per decade	NA	NA	RR 1.7	<0.001	
	Inoue H, 2000 ²⁰	740	Age >65 years	NA	NA	RR 3.33 (1.92-5.81)	0.0001	
	Wang TJ, 2003 ³⁶	705	Incremental risk per decade	NA	NA	HR 1.32 (1.02–1.76) (for stroke)	<0.05	
			Incremental risk per decade	NA	NA	HR 2.13 (1.86–2.44) (for stroke or death)	<0.05	
	Stollberger C, 2004 ³³	409	Correlation with increasing age	NA	NA	RR 1.05 (1.02–1.09)	0.0006	
	Frost L, 2007 ¹⁹	141,493	Age 70–74 vs. 40–44 years (for men)	NA	NA	HR 6.31 (4.78–8.33)	<0.05	
	Ruigómez A, 2009 ²³	831	Age >80 vs. 40–59 years	NA	NA	RR 5.8 (1.9–17.6)	<0.05	
	Lip GYH, 2010 ¹⁵	1,577	Age >75 vs. ≤75 years	3.6%	1.8%	OR 1.46 (0.63–3.65)	NS	
	Hobbs FD, 2011 ³⁰	665	Incremental risk per 5 years	NA	NA	HR 1.26 (0.93–1.72)	NS	
	Lin LY, 2011 ²¹	7,920	Age ≥75 vs. 20–64 years	NA	NA	OR 1.652 (1.313–2.080)	<0.001	
	Van Staa TP, 201125	79,844	Age 50–59 vs. 60–69 years	NA	NA	RR 0.44 (0.28–0.69)	<0.05	
			Age <50 vs. 60–69 years	NA	NA	RR 0.14 (0.06–0.34)	<0.05	
			Age ≥80 vs. 60–69 years	NA	NA	RR 2.22 (1.78–2.76)	<0.05	
			Age 70-79 vs 60-69	NA	NA	BB 1.42 (1.12-1.78)	<0.05	

Age as a risk factor

			Study	n	Age risk factor	Stroke rate test	Stroke rate ref.	RR/OR/HR (95% CI)	P value		
			Cabin HS, 1990 ¹⁸	272	Age >70 vs. ≤70 years	13%	7%	NA (bivariate analysis)	NS		
			Petersen P, 1990 ³²	336	Correlation with increasing age	NA	NA	LR Enter 0.01	NS		
			Moulton AW, 199122	265	Age >75 vs. ≤75	NA	NA	OR 1.72 (1.04–2.84)	<0.05		
4	Age >65 yea	ars	NA		NA	A Contraction		RR 3.33 (1.	92–5.	81)	0.0001
			Van Latum JC, 1995 ²⁴	375	≥60–69 vs. <60 vears	NA	NA	HR 0.8 (0.3–1.9)	NS		
					≥70–79 vs. <60	NA	NA	HR 0.9 (0.4–2.1)	NS		
			Feelendie M. 400024 (min.	1 000	≥80 vs. <60 years	NA	NA	HR 0.6 (0.2–1.6)	NS		
			Ezekowitz M, 1998 ³⁴ (using	1,066	Incremental risk per	NA	NA	RR 1.5 (1.1–1.9)	0.008		
	Age 50–59 years	9 vs. 60–6	69 N	A	1	NA		RR 0.44 ((0.28–	-0.69)	<0.05
	Age <50 v years	rs. 60–69	Ν	A	1	NA		RR 0.14 ((0.06–	-0.34)	<0.05
	Age ≥80 v years	rs. 60–69	Ν	A	1	A		RR 2.22 ((1.78–	-2.76)	<0.05
	Age 70–79 years	9 vs. 60–6	69 N	A	1	NA		RR 1.42 ((1.12–	-1.78)	<0.05
			Frost L, 2007 ¹⁹	141,493	Age 70–74 vs. 40–44	4 NA	NA	HR 6.31 (4.78–8.33)	<0.05		
			Ruigómez A, 2009 ²³	831	Age >80 vs. 40–59	NA	NA	RR 5.8 (1.9–17.6)	<0.05		
			Lip GYH, 2010 ¹⁵	1,577	Age >75 vs. ≤75 vears	3.6%	1.8%	OR 1.46 (0.63–3.65)	NS		
			Hobbs FD, 2011 ³⁰	665	Incremental risk per 5 years	NA	NA	HR 1.26 (0.93–1.72)	NS		
			Lin LY, 2011 ²¹	7,920	Age ≥75 vs. 20–64 years	NA	NA	OR 1.652 (1.313–2.080)	<0.001		
			Van Staa TP, 201125	79,844	Age 50–59 vs. 60–69 years) NA	NA	RR 0.44 (0.28–0.69)	<0.05		
					Age <50 vs. 60–69 years	NA	NA	RR 0.14 (0.06–0.34)	<0.05		
					Age ≥80 vs. 60–69 years	NA	NA	RR 2.22 (1.78–2.76)	<0.05		
					Age 70–79 vs. 60–69) NA	NA	RR 1.42 (1.12–1.78)	<0.05		
We	ednesdav. Octo	ber 23, 2013	}								

Sex as a risk factor

Study	n	Sex comparison	Stroke rate test	Stroke rate ref.	RR/OR/HR (95% CI)	P value
Aronow WS, 1989 ³⁷	110	F vs. M	NA	NA	OR 0.85	NS
Cabin HS, 1990 ¹⁸	272	F vs. M	14%	6%	NA (bivariate analysis)	0.023
					CRC 1.0	0.014
Petersen P, 1990 ³²	336	F vs. M	NA	NA	LR Enter 0.48	NS
Laupacis A, 1994 (AF Investig. 1994) ⁴	1,593	F vs. M	NA	NA	NA	NS
Van Latum JC, 1995 ²⁴	375	F vs. M	NA	NA	HR 1.5 (1.0–2.4)	NR
Ezekowitz M, 1998 ³⁴ (using clinical factors alone)	1,066	F vs. M	NA	NA	NA	NS
Aronow WS, 1998 ³⁸	312	M vs. F	NA	NA	RR 0.98 (0.67–1.43)	NS
Nakagami H, 1998 ³¹	290	F vs. M	NA	NA	OR 0.98 (0.55–1.72)	NS
SPAF III, 1998 ²⁷	892	F vs. M	NA	NA	NA	NS
Stollberger CM, 1998 ³⁵	409	F vs. M	NA	NA	NS	NS
Hart RG, 1999 ²⁸	2,012	F vs. M	NA	NA	RR 1.6	0.01
Hart RG, 2000 ²⁹ (paroxysmal AF)	460	F vs. M	NA	NA	NA	NS
Hart RG, 2000 ²⁹ (persistent AF)	1,552	F vs. M	NA	NA	RR 1.8	0.004
Inoue H, 2000 ²⁰	740	M vs. F	NA	NA	OR 2.00 (1.07–3.72)	0.0291
Wang TJ, 2003 ³⁶	705	F vs. M	NA	NA	1.92 (1.20–3.07)	<0.05
Fang M, 2005 ³⁹	13,559	F vs. M	3.5%	1.8%	RR 1.6 (1.3–1.9)	<0.05
Ruigomez A, 2009 ²³	831	M vs. F	NA	NA	RR 1.0 (0.6–1.7)	NS
Lip GYH, 2010 ¹⁵	1,084	F vs. M	3.6%	1.4%	OR 2.53 (1.08–5.92)	0.03
Hobbs FD, 2011 ³⁰	665	F vs. M	NA	NA	HR 0.99 (0.57–1.70)	NS
Lin LY, 2011 ²¹	7,920	F vs. M	NA	NA	OR 0.942 (0.787–1.127)	NS
Van Staa TP, 2011 ²⁵	79,844	M vs. F	NA	NA	RR 0.95 (0.84–1.06)	NS

HT > 160 as a risk factor

	Study	n	Stroke rate test	Stroke rate ref.	RR/OR/HR (95% CI)	P value
(A) SBP >160 mmHg as a risk factor for stroke factors	e in terms of	whether or not the	e study reported	SBP >160 mmHg as a signif	icant risk
	SPAF study, 1995 ⁴¹	854	NA	NA	RR 2.2 (1.3–3.6)	0.004
	Van Latum JC, 1995 ²⁴	375	NA	NA	HR 1.7 (1.0–2.9)	NR
	Hart RG, 1999 ²⁸	2,012	NA	NA	RR 2.3	<0.001
	Hart RG, 2000 ²⁹ (paroxysmal AF)	460	NA	NA	NA	NS
	Hart RG, 2000 ²⁹ (persistent AF)	1,552	NA	NA	RR 2.8	<0.001
	Wang TJ, 2003 ³⁶ (per 10 mmHg increase)	705	NA	NA	HR 1.06 (0.97–1.17) (for stroke)	NS
			NA	NA	HR 1.06 (1.02–1.11) (for stroke or death)	<0.05
	van Staa TP, 2011 ²⁵ (140–159 vs. <120mmHg)	79,844	NA	NA	RR 2.74 (1.21–6.19)	<0.05
	van Staa TP, 2011 ²⁵ (160–179 vs. <120mmHg)	79,844	NA	NA	RR 1.49 (0.55–4.00)	NS
	van Staa TP, 2011²⁵ (≥180 vs. <120 mmHg)	79,844	NA	NA	RR 4.28 (1.25–14.64)	<0.05

Presence of HT as a risk factor

(B) Presence of Htn (including a history of Htn) as a risk factor for stroke in terms of whether or not the study reported Htn as a significant risk factor

Aronow WS, 1989 ³⁷	110	NA	NA	OR 12.51	<0.01
Cabin HS, 1990 ¹⁸	272	12%	8%	NA (bivariate analysis)	NS
Petersen P, 1990 ³²	336	NA	NA	LR Enter 0.8	NS
Moulton AW, 1991 ²²	265	NA	NA	OR 1.89 (1.15–3.10)	<0.05
SPAF Investigators, 1992 ⁴⁰	568	NA	NA	RR 2.2 (1.1–4.3)	0.02
Laupacis A, 1994 ⁴ (AF Investig. 1994)	1,593	NA	NA	RR 1.6	<0.05
Ezekowitz M, 1998 ²⁷ (using clinical factors alone)	1,066	NA	NA	RR 1.5 (0.9–2.5)	0.11
Ezekowitz M, 1998 ³⁴ (using clinical and echocardiographic features)	1,010	NA	NA	RR 1.5 (0.9–2.5)	0.13
Aronow WS, 1998 ³⁸	312	NA	NA	RR 1.254 (0.847–1.855)	NS
Seidl K, 1998 ⁴²	191	NA	NA	OR 6.5 (1.5–45)	<0.05
SPAF III, 1998 ²⁷	892	3.6% per year	1.1% per year	RR 3.3 (1.7–6.9)	0.001
Stollberger C, 1998 ³⁵	409	NA	NA	RR 3.6 (1.8–8.4)	0.001
Hart RG, 1999 ²⁸	2,012	NA	NA	RR 2.0	<0.001
Hart RG, 2000 ²⁹ (paroxysmal AF)	460	NA	NA	RR 3.4	0.003
Hart RG, 2000 ²⁹ (persistent AF)	1,552	NA	NA	RR 1.8	0.008
Stollberger C, 2004 ³³	409	NA	NA	NA	NS
Ruigomez A, 2009 ²³	831	NA	NA	RR 0.6 (0.3–1.1)	NS
Lip GYH, 2010 ¹⁵	1,084	2.6%	1.7%	OR 1.01 (0.38–2.66)	NS
Hobbs FD, 2011 ³⁰	665	NA	NA	HR 1.10 (0.62–1.95)	NS
Lin LY, 2011 ²¹	7,920	NA	NA	OR 2.656 (2.140–3.296)	<0.001

CAD as a risk factor

Study	n	SHD definition	Stroke rate test	Stroke rate ref.	RR/OR/HR (95% Cl)	P value
SPAF III, 1998 ²⁷	892	Ischemic heart disease	NA	NA	NA	NS
Stollberger CM, 1998 ³⁵	409	Ischemic heart disease	NA	NA	NA	NS
Aronow WS, 1989 ³⁷	110	MI	NA	NA	OR 4.84	<0.01
Petersen P, 1990 ³²	336	MI	28%/2 y	11%/2 y	LR 4.33	0.0375
Laupacis A, 1994 ⁴ (AF Investig. 1994)	1,593	MI	NA	NA	RR 1.2	NS
Aronow WS, 1998 ³⁸	312	MI	NA	NA	RR 0.87 (0.60–1.26)	NS
Hobbs FDR, 2011 ³⁰	665	MI	NA	NA	HR 0.52 (0.18–1.50)	NS
Lin LY, 2011 ²¹	7,920	Coronary artery disease	NA	NA	OR 1.07 (0.83–1.36)	NS
Lin LY, 2011 ²¹	7,920	MI	NA	NA	OR 1.42 (0.91–2.23)	NS
Cabin HS, 1990 ¹⁸	272	Structural heart disease	14%	5%	NA	0.02
		Structural heart disease	NA	NA	CRC 0.9	0.037
Ruigomez A, 2009 ²³	831	Structural heart disease (other cardiac disease)	NA	NA	RR 0.8 (0.2–3.2)	NS
Laupacis A, 1994 ⁴ (AF Investig. 1994)	1,593	Angina	NA	NA	NA	NS
Hobbs FD, 2011 ³⁰	665	Angina	NA	NA	HR 1.12 (0.30–2.44)	NS
					· ·	· · -

SPAF Investig., 1992 ²⁶	568	CHF	NA	NA	RR 2.0 (0.8–4.7)	NS
Laupacis A, 1994 ⁴ (AF Investigators 1994	1,593	CHF	NA	NA	RR 1.4	NS
Ezekowitz M, 1998 ³⁴ (using clinical factors alone)	1,066	CHF	NA	NA	RR 1.7 (1.1–2.7)	0.03
Ezekowitz M, 1998 ³⁴ (AF Investig. 1998) (using clinical and echocardiographic features)	1,010	CHF	NA	NA	RR 1.4 (0.8–2.3)	0.16
SPAF III, 1998 ²⁷	892	CHF	NA	NA	NA	NS
Hart RG, 1999 ²⁸	2,012	CHF	NA	NA	NA	NS
Lip GYH, 2010 ¹⁵	1,577	CHF	2.4%	2.3%	OR 0.72 (0.27–1.88)	NS
Hobbs FD, 2011 ³⁰	665	CHF	NA	NA	HR 0.78 (0.36–1.68)	NS
Lin LY, 2011 ²¹	7,920	CHF	NA	NA	OR 1.611 (1.299–1.999)	<0.001
Van Staa TP, 2011 ²⁵	79,844	CHF	NA	NA	RR 1.26 (1.11–1.42)	<0.05
SPAF Investig., 1992 ²⁶	568	LV dysfunction	NA	NA	RR 2.0 (1.0–4.0)	0.05
SPAF Study, 1995 ⁴¹	854	LV dysfunction	NA	NA	1.8 (1.2–3.0)	0.02
AFI Echo, 1998 ³⁴ (AF Investig. 1998) (Using clinical and echocardiographic features)	1,010	LV dysfunction (moder- ate to severe vs. none to mild)	NA	NA	RR 2.5 (1.5–4.4)	<0.001
Aronow WS, 1998 ³⁸	312	LV ejection fraction	NA	NA	RR 1.795 (1.214–2.653)	0.003
Stollberger CM, 1998 ³⁵	409	LV dysfunction	NA	NA	NA	NS
Stollberger CM, 2004 ³³	409	LV dysfunction	NA	NA	NA	NS
Stollberger CM, 1998 ³⁵	409	NYHA >II	NA	NA	NA	NS
Stollberger CM, 2004 ³³	409	NYHA >II (vs. no heart failure)	NA	NA	NA	NS
Hart RG, 1999 ²⁸	2,012	LV dysfunction	NA	NA	NA	NS
Lip GYH, 2010 ¹⁵	1,577	LV ejection fraction <40%	0.8%	2.1%	0.34 (0.04–2.73)	NS

SPAF Investig., 1992 ²⁶	568	CHF	NA	NA	RR 2.0 (0.8–4.7)	NS
Laupacis A, 1994 ⁴ (AF Investigators 1994	1,593	CHF	NA	NA	RR 1.4	NS
Ezekowitz M, 1998 ³⁴ (using clinical factors alone)	1,066	CHF	NA	NA	RR 1.7 (1.1–2.7)	0.03
Ezekowitz M, 1998 ³⁴ (AF Investig. 1998) (using clinical and echocardiographic features)	1,010	CHF	NA	NA	RR 1.4 (0.8–2.3)	0.16
SPAF III, 1998 ²⁷	892	CHF	NA	NA	NA	NS
Hart RG, 1999 ²⁸	2,012	CHF	NA	NA	NA	NS
Lip GYH, 2010 ¹⁵	1,577	CHF	2.4%	2.3%	OR 0.72 (0.27–1.88)	NS
Hobbs FD, 2011 ³⁰	665	CHF	NA	NA	HR 0.78 (0.36–1.68)	NS
Lin LY, 2011 ²¹	7,920	CHF	NA	NA	OR 1.611 (1.299–1.999)	<0.001
Van Staa TP, 2011 ²⁵	79,844	CHF	NA	NA	RR 1.26 (1.11–1.42)	<0.05
SPAF Investig., 1992 ²⁶	568	LV dysfunction	NA	NA	RR 2.0 (1.0–4.0)	0.05
SPAF Study, 1995 ⁴¹	854 <mark>-</mark>	LV dysfunction	NA	NA	1.8 (1.2–3.0)	0.02
AFI Echo, 1998 ³⁴ (AF Investig. 1998) (Using clinical and echocardiographic features)	1,010	LV dysfunction (moder- ate to severe vs. none to mild)	NA	NA	RR 2.5 (1.5–4.4)	<0.001
Aronow WS, 1998 ³⁸	312	LV ejection fraction	NA	NA	RR 1.795 (1.214–2.653)	0.003
Stollberger CM, 1998 ³⁵	409	LV dysfunction	NA	NA	NA	NS
Stollberger CM, 2004 ³³	409	LV dysfunction	NA	NA	NA	NS
Stollberger CM, 1998 ³⁵	409	NYHA >II	NA	NA	NA	NS
Stollberger CM, 2004 ³³	409	NYHA >II (vs. no heart failure)	NA	NA	NA	NS
Hart RG, 1999 ²⁸	2,012	LV dysfunction	NA	NA	NA	NS
Lip GYH, 2010 ¹⁵	1,577	LV ejection fraction <40%	0.8%	2.1%	0.34 (0.04–2.73)	NS

SPAF Investig., 1992 ²⁶	568	CHF	NA	NA	RR 2.0 (0.8–4.7)	NS
Laupacis A, 1994 ⁴ (AF Investigators 1994	1,593	CHF	NA	NA	RR 1.4	NS
Ezekowitz M, 1998 ³⁴ (using clinical factors alone)	1,066	CHF	NA	NA	RR 1.7 (1.1–2.7)	0.03
Ezekowitz M, 1998 ³⁴ (AF Investig. 1998) (using clinical and echocardiographic features)	1,010	CHF	NA	NA	RR 1.4 (0.8–2.3)	0.16
SPAF II						NS
Hart RC						NS
Lip GYF						NS
Hobbs I						NS
Lin LY,).001
Van Ste).05
SPAF Ir).05
SPAF S).02
AFI Ech (Using of features).001
Aronow).003
Stollber						NS
Stollberger UN, 2004	403	Lv นุรานกุรเขา	11/71	11/71	N/A	NS
Stollberger CM, 1998 ³⁵	409	NYHA >II	NA	NA	NA	NS
Stollberger CM, 2004 ³³	409	NYHA >II (vs. no heart failure)	NA	NA	NA	NS
Hart RG, 1999 ²⁸	2,012	LV dysfunction	NA	NA	NA	NS
Lip GYH, 2010 ¹⁵	1,577	LV ejection fraction <40%	0.8%	2.1%	0.34 (0.04–2.73)	NS

SPAF Invest	ig., 1992 ²⁶	568	CHF		NA	NA	RR 2.0 (0.8–4.7)	NS
Laupacis A, 1994	1994 ⁴ (AF Investigators	1,593	CHF		NA	NA	RR 1.4	NS
Ezekowitz M factors alone	, 1998 ³⁴ (using clinical)	1,066	CHF		NA	NA	RR 1.7 (1.1–2.7)	0.03
Ezekowitz M (using clinica features)	, 1998 ³⁴ (AF Investig. 1998) Il and echocardiographic	1,010	CHF		NA	NA	RR 1.4 (0.8–2.3)	0.16
SPAF II								NS
Hart RG	LV dysfunction		NA	NA	RR 2.0	0 (1.0–4.0)	0.05	NS
Lip GYF	LV dysfunction		ΝΙΔ	ΝΔ	18	(1.2_3.0)	0.02	NS
Hobbs I					1.0	(1.2 - 3.0)	0.02	NS
Lin LY,	LV dysfunction (mode	er-	NA	NA	RR 2.	5 (1.5–4.4)	<0.001).001
Van Sta	to mild)	J).05
SPAF Ir				NLA			0.000).05
SPAF S	LV ejection fraction		NA	INA	(1 01	1 1.795	0.003).02
AFI Ech					(1.21	4–2.055)).001
features	LV dysfunction		NA	NA		NA	NS	
Aronow	LV dysfunction		NA	NA		NA	NS).003
Stollbor								NG
Stollberge								NS
Stollberger C	M 1998 ³⁵	409			ΝΔ	NA	NΔ	NS
Stollberger C	M 200433	400		(vs. no heart	ΝΔ	ΝA	NΔ	NS
Otoliberger C	Mi, 2004	400	failure)	(vs. no near	INA.	NА		NO
Hart RG, 199	99 ²⁸	2,012	LV dysfur	nction	NA	NA	NA	NS
Lip GYH, 20	10 ¹⁵	1,577	LV ejectio <40%	on fraction	0.8%	2.1%	0.34 (0.04–2.73)	NS

Structural as a risk factor

Aronow WS, 1989 ³⁷	110	LV hypertrophy	NA	NA	OR 6.56	<0.01
Aronow WS, 1998 ³⁸	312	LV hypertrophy	NA	NA	RR 2.792 (1.784–4.370)	0.0001
AFI Echo, 1998 ³⁴ (AF Investig. 1998) (using clinical and echocardiographic features)	1,010	Mitral valve prolapse	NA	NA	NA	NS
AFI Echo, 1998 (AF Investig. 1998) (using clinical and echocardiographic features)	1,010	Mitral valve regurgitation	NA	NA	NA	NS
Aronow WS, 1998 ³⁸	312	Mitral stenosis	NA	NA	RR 1.98 (1.09–3.58)	0.025
Aronow WS, 1998 ³⁸	312	Mitral annular calcifica- tion	NA	NA	RR 1.210 (0.774–1.892)	NS
Nakagami, 1998 ³¹	290	Mitral valve regurgitation (≤mild vs. ≥moderate)	25%	9%	OR 0.45 (0.2–0.97)	<0.05

PAD as a risk factor

					(100.1 +00.0)	
Ruigomez A, 2009 ²³	831	Peripheral vascular disease	NA	NA	RR 2.6 (1.3–5.1)	<0.05
Lip, 2010 ¹⁵	1,577	Vascular disease	3.6%	1.5%	OR 2.27 (0.94–5.46)	0.063
Lin LY, 2011 ²¹	7,920	Peripheral artery disease	NA	NA	OR 1.81 (1.19–2.77)	0.006
Rasmussen LH, 201144	57,053	Vascular disease	20.8%	8.0%	HR 1.91 (1.44–2.54) (Stroke or death)	<0.05
		Vascular disease	8.6%	4.6%	HR 0.80 (0.53–1.20) (Stroke)	NS

DM as a risk factor

Ruigomez A, 2009 ²³	831	Hyperlipidemia	NA	NA	RR 1.2 (0.4–3.4)	NS
Petersen P, 1990 ³²	336	DM	NA	NA	LR Enter 0.16	NS
Laupacis A, 1994 ⁴ (AF Investig. 1994)	1,593	DM	NA	NA	RR 1.7	<0.05
Ezekowitz M, 1998 ³⁴ (using clinical factors alone)	1,066	DM	NA	NA	RR 1.7 (1.0–2.8)	0.05
Ezekowitz M, 1998 ³⁴ (using clinical and echocardiographic features)	1,010	DM	NA	NA	RR 1.7 (1.0–2.9)	0.05
Aronow WS, 1998 ³⁸	312	DM	NA	NA	RR 0.83 (0.56–1.22)	NS
Seidl K, 1998 ⁴²	191	DM	NA	NA	NA	NS
SPAF III, 1998 ²⁷	892	DM	NA	NA	NA	NS
Stollberger CM, 1998 ³⁵	490	DM	NA	NA	NA	NS
Hart RG, 1999 ²⁸	2,012	DM	NA	NA	RR 1.9 (for disabling/ fatal stroke)	0.02
Wang TJ, 2003 ³⁶	705	DM	NA	NA	HR 1.80 (1.43–3.13) (for stroke)	<0.05
			NA	NA	HR 1.40 (1.07–1.83) (for stroke or death)	<0.05
Lip GYH, 2010 ¹⁵	1,577	DM	4.3%	1.9%	OR 1.79 (0.73–4.40)	NS
Hobbs FD, 2011 ³⁰	665	DM	NA	NA	HR 2.06 (1.07–3.98)	0.03
Lin LY, 2011 ²¹	7,920	DM	NA	NA	OR 1.341 (1.092–1.648)	0.005
Van Staa TP, 2011 ²⁵	79,844	DM	NA	NA	RR 1.33 (1.14–1.55)	<0.05

(B) Stroke risk factors included in each RSM

RSM (year)	AF duration	Age	DM	Female	Htn	Vasc	SHD	Stroke/TE	Thyrotox
ACCP (1998)	-	+	+	-	+	-	+	-	+
ACCP (2004)87	_	+	+	_	+	_	+	+	_
AFI (1994) ⁴	-	-	+	-	+	-	-	+	-
AFI (1999)	_	+	+	_	+	_	_	+	_
AFI (2003) ⁵¹	-	-	+	-	+	-	+	+	-
AHA/ACC/ESC (2001) ⁴⁷	-	+	+	_	+	_	+	_	+
CHADS2 (2001)49	-	+	+	-	+	_	+	+	-
EAFT (1995) ²⁴	+	+	—	_	+	-	+	+	_
Framingham (2003)36	_	+	+	+	+	-	-	-	_
SPAF (1992) ⁴⁰	_	_	—	_	+	-	+	+	_
SPAF (1995) ⁴¹	-	+	_	+	+	-	+	+	_
SPAF (1998) ²⁷	_	+	_	+	+	_	+	+	_
SPAF (1999) ²⁹	-	+	+	+	+	-	-	_	-
SPAF (1999) ²⁸	_	+	+	+	+	_	_	_	_
Rietbrock-CHADS ₂ (2008) ⁹⁰	-	+	+	+	+	-	-	+	-
CHA2DS2-VASc (2010) ¹⁵	-	+	+	+	+	+	+	+	_

(B) Stroke risk factors in uded in each RSM

RSM (year)	AF d	ration	Age	DM	Female	Htn	Vasc	SHD	Stroke/TE	Thyrotox
ACCP (1998)		-	+	+	-	+	_	+	_	+
ACCP (2004)87		-	+	+	-	+	_	+	+	_
AFI (1994) ⁴		-	_	+	-	+	_	-	+	_
AFI (1999)		-	+	+	-	+	_	-	+	_
AFI (2003) ⁵¹		-	_	+	-	+	-	+	+	_
AHA/ACC/ESC (2001) ⁴⁷			+	+	_	+	-	+	_	+
CHADS2 (2001) ⁴⁹		-	+	+	-	+	_	+	+	-
EAFT (1995) ²⁴		-	+	_	-	+	_	+	+	_
Framingham (2003)36	6	-	+	+	+	+	-	-	-	_
SPAF (1992) ⁴⁰		-	_	_	-	+	_	+	+	_
SPAF (1995) ⁴¹		-	+	-	+	+	-	+	+	_
SPAF (1998) ²⁷		-	+	_	+	+	_	+	+	_
SPAF (1999) ²⁹		-	+	+	+	+	-	-	-	_
SPAF (1999) ²⁸		-	+	+	+	+	_	-	_	_
Rietbrock-CHADS ₂ (2008) ⁹⁰			+	+	+	+	-	-	+	_
CHA2DS2-VASc (2010) ¹⁵		1	+	+	+	+	+	+	+	_

(B) Stroke risk factors in uded in each RSM

RSM (year)	AF d	ration	Age	DM	Female	Htn	Vasc	SHD	Stroke/TE	Thy otox
ACCP (1998)		-	+	+	-	+	_	+	_	
ACCP (2004)87		-	+	+	-	+	_	+	+	
AFI (1994) ⁴		-	_	+	-	+	-	_	+	
AFI (1999)		-	+	+	-	+	_	_	+	
AFI (2003) ⁵¹		-	_	+	-	+	-	+	+	
AHA/ACC/ESC (2001) ⁴⁷		-	+	+	_	+	-	+	_	
CHADS2 (2001)49		-	+	+	-	+	_	+	+	
EAFT (1995) ²⁴		-	+	_	-	+	_	+	+	
Framingham (2003)36	6	-	+	+	+	+	-	_	-	
SPAF (1992) ⁴⁰		-	-	_	-	+	_	+	+	
SPAF (1995) ⁴¹		-	+	_	+	+	-	+	+	-
SPAF (1998) ²⁷		-	+	_	+	+	_	+	+	
SPAF (1999) ²⁹		-	+	+	+	+	-	_	-	-
SPAF (1999) ²⁸		-	+	+	+	+	_	-	_	-
Rietbrock-CHADS ₂ (2008) ⁹⁰			+	+	+	+	-	-	+	
CHA2DS2-VASc (2010) ¹⁵		1	+	+	+	+	+	+	+	V

(B) Stroke risk factors in uded in each RSM

RSM (year)	AF d	ration	Age	DM	Female	Htn	Vasc	SHD	Stroke/TE	Thy otox
ACCP (1998)		-	+	+	_	+	-	+	-	
ACCP (2004)87		-	+	+	_	+	_	+	+	
AFI (1994) ⁴		-	_	+	_	+	-	-	+	
AFI (1999)		-	+	+	_	+	—	-	+	
AFI (2003) ⁵¹		-	-	+	_	+	_	+	+	
AHA/ACC/ESC (2001) ⁴⁷			+	+	_	+	-	+	_	
CHADS2 (2001)49		-	+	+	_	+	_	+	+	
EAFT (1995) ²⁴		-	+	_	_	+	_	+	+	
Framingham (2003)30	6	-	+	+	+	+	_	-	_	
SPAF (1992) ⁴⁰		-	-	_	_	+	_	+	+	
SPAF (1995) ⁴¹		-	+	_	+	+	_	+	+	
SPAF (1998) ²⁷		-	+	_	+	+	—	+	+	
SPAF (1999) ²⁹		-	+	+	+	+	-	-	-	
SPAF (1999) ²⁸		-	+	+	+	+	_	_	_	
Rietbrock-CHADS ₂ (2008) ⁹⁰			+	+	+	+	-	-	+	
CHA2DS2-VASc (2010) ¹⁵			–	±			+	+	+	

C statistic Prediction model

RSM	Gage BF, 2001 ⁴⁹	Gage BF, 2004 ⁵²	Lip, GYH, 2010 ¹⁵	Olesen JB, 2011 ¹⁶	Hobbs FD, 2011 ³
ACCP (1998)	NR	0.58	NR	NR	NR
ACCP (2008)	NA	NA	0.57	NR	0.60
AFI (1994) ⁴	0.68	0.63	0.57	NR	NR
CHADS ₂ (2001) ⁴⁹	0.82	0.70	0.56	0.72	0.55
Framingham (2003) ³⁶	NR	0.69	0.64	NR	0.59
SPAF (1998) ²⁷	NR	0.64	NR	NR	NR
SPAF (1999) ²⁹	0.74	NR	0.55	NR	NR
AHA/ACC/ESC (2006)89	NA	NA	0.57	NR	0.61
Rietbrock-CHADS ₂ (2008) ⁹⁰	NA	NA	0.59	NR	0.62
CHA2DS2-VASc (2010) ¹⁵	NA	NA	0.61	0.85	0.60

C statistic Prediction model

RSM	Gage BF, 2001 ⁴⁹	Gage BF, 2004 ⁵²	Lip, GYH, 2010 ¹⁵	Olesen JB, 2011 ¹⁶	Hobbs FD, 2011 ³
ACCP (1998)	NR	0.58	NR	NR	NR
ACCP (2008)	NA	NA	0.57	NR	0.60
AFI (1994) ⁴	0.68	0.63	0.57	NR	NR
CHADS ₂ (2001) ⁴⁹	0.82	0.70	0.56	0.72	0.55
Framingham (2003) ³⁶	NR	0.69	0.64	NR	0.59
SPAF (1998) ²⁷	NR	0.64	NR	NR	NR
SPAF (1999) ²⁹	0.74	NR	0.55	NR	NR
AHA/ACC/ESC (2006)89	NA	NA	0.57	NR	0.61
Rietbrock-CHADS ₂ (2008) ⁹⁰	NA	NA	0.59	NR	0.62
CHA2DS2-VASc (2010) ¹⁵	NIA	NIA	0.61	0.85	0.60

the strongest, independent predictors of stroke are
1.a prior stroke or TIA,
2.age >75 years,
3.hypertension,
4.diabetes mellitus and
5.structural heart disease.

Sex, heart failure and vascular disease cause more discussion because the available evidence favoring thier use as risk factors in AF per se is not as convincing

CHA ₂ DS ₂ -VASc	Score
Congestive heart failure/LV dysfunction	1
Hypertension	1
Age \geq 75 years	2
Diabetes mellitus	1
Stroke/TIA/TE	2
Vascular disease (prior MI, PAD, or aortic plaque)	1
Aged 65–74 years	1
Sex category (i.e. female gender)	1
Maximum score	9

Warfarin

Warfarin

Warfarin

Table 5. Incidence Rates of Ischemic Stroke and Intracranial Hemorrhage among Patients with Nonvalvular Atrial Fibrillation Who Were Taking Warfarin, According to the International Normalized Ratio (INR) at the Time of the Stroke.*

INR	Person-yr†	Stroke (95% CI) (N=152)	Person-yr†	Intracranial Hemorrhage (95% CI) (N=58)
		rate/100 person-yr		rate/100 person-yr
<1.5	556	7.7 (5.7–10.4)	561	0.5 (0.2–1.7)
1.5-1.9	2847	1.9 (1.4-2.4)	2867	0.3 (0.1–0.6)
2.0-2.5	5357	0.4 (0.3–0.7)	5400	0.3 (0.2–0.4)
2.6-3.0	2388	0.9 (0.6-1.4)	2409	0.5 (0.3–0.9)
3.1-3.5	834	0.7 (0.3-1.6)	843	0.6 (0.3-1.4)
3.6-3.9	243	0.4 (0.1-2.9)	247	0.4 (0.1–2.9)
4.0-4.5	144	1.4 (0.4-5.5)	147	2.7 (1.0-7.3)
>4.5	115	2.6 (0.8-8.1)	118	9.4 (5.2–16.9)

Hylek, EM et al. N Engl J Med. 2003;349:1019-2614

Table 5. Incidence Rates of Ischemic Stroke and Intracranial Hemorrhage among Patients with Nonvalvular Atrial Fibrillation Who Were Taking Warfarin, According to the International Normalized Ratio (INR) at the Time of the Stroke.*

INR	Person-yr†	Stroke (95% CI) (N=152)	Person-yr†	Intracranial Hemorrhage (95% CI) (N=58)
		rate/100 person-yr		rate/100 person-yr
<1.5	556	7.7 (5.7–10.4)	561	0.5 (0.2–1.7)
1.5-1.9	2847	1.9 (1.4-2.4)	2867	0.3 (0.1-0.6)
2.0–2.5	5357	0.4 (0.3–0.7)	5400	0.3 (0.2–0.4)
2.6-3.0	2388	0.9 (0.6–1.4)	2409	0.5 (0.3–0.9)
3.1-3.5	834	0.7 (0.3-1.6)	843	0.6 (0.3-1.4)
3.6-3.9	243	0.4 (0.1-2.9)	247	0.4 (0.1-2.9)
4.0-4.5	144	1.4 (0.4-5.5)	147	2.7 (1.0-7.3)
>4.5	115	2.6 (0.8-8.1)	118	9.4 (5.2–16.9)

Hylek, EM et al. N Engl J Med. 2003;349:1019-2614

Table 5. Incidence Rates of Ischemic Stroke and Intracranial Hemorrhage among Patients with Nonvalvular Atrial Fibrillation Who Were Taking Warfarin, According to the International Normalized Ratio (INR) at the Time of the Stroke.*

INR	Person-yr†	Stroke (95% CI) (N=152)	Person-yr†	Intracranial Hemorrhage (95% CI) (N=58)
		rate/100 person-yr		rate/100 person-yr
<1.5	556	7.7 (5.7–10.4)	561	0.5 (0.2-1.7)
1.5-1.9	2847	1.9 (1.4-2.4)	2867	0.3 (0.1-0.6)
2.0–2.5	5357	0.4 (0.3–0.7)	5400	0.3 (0.2–0.4)
2.6-3.0	2388	0.9 (0.6-1.4)	2409	0.5 (0.3-0.9)
3.1-3.5	834	0.7 (0.3-1.6)	843	0.6 (0.3-1.4)
3.6–3.9	243	0.4 (0.1–2.9)	247	0.4 (0.1–2.9)
4.0-4.5	144	1.4 (0.4-5.5)	147	2.7 (1.0–7.3)
>4.5	115	2.6 (0.8-8.1)	118	9.4 (5.2–16.9)

Hylek, EM et al. N Engl J Med. 2003;349:1019-2614

Adjusted Odds Ratios for Ischemic Stroke and Intracranial Bleeding in Relation to Intensity of Anticoagulation

Fuster et al. J Am Coll Cardiol. 2001;38:1231-1266.

CMAJ

Research

Rates of hemorrhage during warfarin therapy for atrial fibrillation

Tara Gomes MHSc, Muhammad M. Mamdani PharmD MPH, Anne M. Holbrook MD PharmD, J. Michael Paterson MSc, Chelsea Hellings MSc, David N. Juurlink MD PhD

Table 1 (part 2 of 2): Baseline characteristics of people starting warfarintherapy after atrial fibrillation was diagnosed

Characteristic	Patients, no. (%)* n = 125 195
Medication use (past 120 d)	
Acetylsalicylic acid and clopidogrel	557 (0.4)
Acetylsalicylic acid and dipyridamole	817 (0.7)
Other nonsteroidal anti-inflammatory drugs	20 671 (16.5)
Clopidogrel	4 151 (3.3)
Ticlopidine	1 092 (0.9)
Time to starting warfarin therapy, d, median (IQR)	7 (2–22)
0	21 573 (17.2)
1–7	41 278 (33.0)
8–14	21 090 (16.8)
15–30	16 976 (13.6)
31–100	24 278 (19.4)
CHADS ₂ score (components)	
Congestive heart failure	44 011 (35.2)
Hypertension	94 063 (75.1)
Age > 75 yr	78 408 (62.6)
Diabetes	30 437 (24.3)
Previous stroke	26 661 (21.3)
CHADS ₂ score	
0	8 655 (6.9)
1	30 108 (24.0)
2	44 716 (35.7)
3	29 713 (23.7)
4	9 599 (7.7)
5	1 860 (1.5)
6	544 (0.4)

	Table 1 (part 2 of 2): Baseline characteristics of people therapy after atrial fibrillation was diagnosed	le starting warfarin			
	Characteristic	Patients, no. (%)* n = 125 195			
	Medication use (past 120 d)				
	Acetylsalicylic acid and clopidogrel	557 (0.4)			
	Acetylsalicylic acid and dipyridamole	817 (0.7)			
CHADS ₂ score					
0			8 655 (6.9)		
1			30 108 (24.0)		
2			44 716 (35.7)		
3			29 713 (23.7)		
4			9 599 (7.7)		
5			1 860 (1.5)		
6			544 (0.4)		
	0	8 655 (6.9)	I		
	1	30 108 (24.0)			
	2	44 716 (35.7)			
	3	29 713 (23.7)			
	4	9 599 (7.7)			
	5	1 860 (1.5)			
	6	544 (0.4)			

	Table 1 (part 2 of 2): Baseline characteristics of people therapy after atrial fibrillation was diagnosed	e starting warfarin			
	Characteristic	Patients, no. (%)* n = 125 195			
	Medication use (past 120 d)				
	Acetylsalicylic acid and clopidogrel	557 (0.4)			
	Acetylsalicylic acid and dipyridamole	817 (0.7)			
CHADS ₂ score					
0			8 655 (6.9)		
1			30 108 (24.0)		
2			44 716 (35.7)		
3			29 713 (23.7)		
4			9 599 (7.7)		
5			1 860 (1.5)		
6			544 (0.4)		
	0	8 655 (6.9)			
	1	30 108 (24.0)			
	2	44 716 (35.7)			
	3	29 713 (23.7)			
	4	9 599 (7.7)			
	5	1 860 (1.5)			
	6	544 (0.4)			

	Table 1 (part 2 of 2): Baseline characteristics of peop therapy after atrial fibrillation was diagnosed	ole starting warfarin		
	Characteristic	Patients, no. (%)* n = 125 195)
	Medication use (past 120 d)			
	Acetylsalicylic acid and clopidogrel	557 (0.4)		
	Acetylsalicylic acid and dipyridamole	817 (0.7)		
CHADS ₂ score				
0				(5.9)
1	N	lajority had CHAI	DS 2-3))
2				.7)
3) د،	23.7)
4			9 599	(7.7)
5			1 860	(1.5)
6			544	(0.4)
	0	8 655 (6.9)		
	1	30 108 (24.0)		
	2	44 716 (35.7)		
	3	29 713 (23.7)		
	4	9 599 (7.7)		
	5	1 860 (1.5)		
	6	544 (0.4)		
Wadnaaday, Ostabar 00	0010			

		Rate of hemorrhage, % per person-year (95% CI)			
Characteristic	Hemorrhages during 5-yr follow-up, no. (%)*	First 30 d	Remainder of 5-yr follow-up	Overall	
Overall, no.	10 840	11.8 (11.1–12.4)	3.4 (3.4–3.5)	3.8 (3.8–3.9)	
CHADS₂ score					
0	382 (3.5)	7.2 (5.5–9.5)	1.6 (1.4–1.7)	1.8 (1.6–2.0)	
1	1 845 (17.0)	7.3 (6.3–8.4)	2.3 (2.2–2.4)	2.5 (2.4–2.6)	
2–3	7 053 (65.1)	13.3 (12.5–14.3)	3.8 (3.7–3.9)	4.3 (4.2–4.4)	
4–6	1 560 (14.4)	16.7 (14.3–19.4)	6.0 (5.7–6.3)	6.7 (6.3–7.0)	
Type of hemorrhage					
Intracranial	549 (5.1)	0.4 (0.4–0.5)	0.2 (0.2–0.2)	0.2 (0.2–0.2)	
Upper gastrointestinal	2 829 (26.1)	4.0 (3.8–4.2)	0.9 (0.8–0.9)	1.0 (1.0–1.0)	
Lower gastrointestinal	3 956 (36.5)	4.6 (4.4–4.9)	1.2 (1.2–1.3)	1.4 (1.4–1.4)	
Other	4 190 (38.7)	4.7 (4.5–5.0)	1.3 (1.3–1.3)	1.5 (1.5–1.5)	

		Rate of hemorrhage, % per person-year (95% Cl)				
Characteristic	Hemorrhages during 5-yr follow-up, no. (%)*	First 30 d	Remainder of 5-yr follow-up	Overall		
Overall, no.	10 840	11.8 (11.1–12.4)	3.4 (3.4–3.5)	3.8 (3.8–3.9)		
CHADS₂ score						
0	382 (3.5)	7.2 (5.5–9.5)		1.8 (1.6–2.0)		
1	1 845 (17.0)	7.3 (6.3–8.4)		2.5 (2.4–2.6)		
2–3	7 053 (65.1)	13.3 (12.5–14.3 He	morrhage	4.3 (4.2–4.4)		
4–6	1 560 (14.4)	16.7 (14.3–19.4 <mark>4.3</mark>	%	6.7 (6.3–7.0)		
Type of hemorrhage						
Intracranial	549 (5.1)	0.4 (0.4–0.5)		0.2 (0.2–0.2)		
Upper gastrointestinal	2 829 (26.1)	4.0 (3.8–4.2)	0.9 (0.8–0.9)	1.0 (1.0–1.0)		
Lower gastrointestinal	3 956 (36.5)	4.6 (4.4–4.9)	1.2 (1.2–1.3)	1.4 (1.4–1.4)		
Other	4 190 (38.7)	4.7 (4.5–5.0)	1.3 (1.3–1.3)	1.5 (1.5–1.5)		

		Rate of hemorrhage, % per person-year (95% CI)			
Characteristic	Hemorrhages during 5-yr follow-up, no. (%)*	Remainder of 5-yr First 30 d follow-up Over			
Overall, no.	10 840	11.8 (11.1–12.4)	3.4 (3.4–3.5)	3.8 (3.8–3.9)	
CHADS₂ score					
0	382 (3.5)	7.2 (5.5–9.5)		1.8 (1.6–2.0)	
1	1 845 (17.0)	7.3 (6.3–8.4)		2.5 (2.4–2.6)	
2–3	7 053 (65.1)	13.3 (12.5–14.3 He	morrhage	4.3 (4.2–4.4)	
4–6	1 560 (14.4)	16.7 (14.3-19.4 4.3	%	6.7 (6.3–7.0)	
Type of hemorrhage					
Intracranial	549 (5.1)	0.4 (0.4–0.5)		0.2 (0.2–0.2)	
Upper gastrointestinal	2 829 (26.1)	4.0 (3.8–4.2)	0.9 (0.8–0.9)	1.0 (1.0–1.0)	
Lower gastrointestinal	3 956 (36.5)	4.6 (4.4–4.9)	1.2 (1.2–1.3)	1.4 (1.4–1.4)	
Other	4 190 (38.7)	4.7 (4.5–5.0)	1.3 (1.3–1.3)	1.5 (1.5–1.5)	

		Rate of hemorrhage, % per person-year (95% CI)			
Characteristic	Hemorrhages during 5-yr follow-up, no. (%)*	First 30 d	Overall		
Overall, no.	10 840	11.8 (11.1–12.4)	3.4 (3.4–3.5)	3.8 (3.8–3.9)	
CHADS₂ score					
0	382 (3.5)	7.2 (5.5–9.5)		1.8 (1.6–2.0)	
1	1 845 (17.0)	7.3 (6.3–8.4)		2.5 (2.4–2.6)	
2–3	7 053 (65.1)	13.3 (12.5–14.3 He	morrhage	4.3 (4.2–4.4)	
4–6	1 560 (14.4)	16.7 (14.3-19.4 4.3	8%	6.7 (6.3–7.0)	
Type of hemorrhage					
Intracranial	549 (5.1)	0.4 (0.4–0.5)		0.2 (0.2–0.2)	
Upper gastrointestinal	2 829 (26.1)	4.0 (3.8–4.2)	0.9 (0.8–0.9)	1.0 (1.0–1.0)	
Lower gastrointestinal	3 956 (36.5)	4.6 (4.4–4.9)	1.2 (1.2–1.3)	1.4 (1.4–1.4)	
Other	4 190 (38.7)	4.7 (4.5–5.0)	1.3 (1.3–1.3)	1.5 (1.5–1.5)	

Age ≤ 75 yr, no.	3684	9.2 (8.4–10.2)	2.6 (2.5–2.7)	2.9 (2.8–3.0)
CHADS ₂ score				
0	382 (10.4)	7.2 (5.5–9.5)	1.6 (1.4–1.7)	1.8 (1.6–2.0)
1	1 204 (32.7)	6.8 (5.7–8.1)	2.0 (1.9–2.2)	2.3 (2.1–2.4)
2–3	1 881 (51.1)	12.1 (10.6–13.9)	3.4 (3.3–3.6)	3.9 (3.7–4.0)
4–6	217 (5.9)	13.1 (8.2–20.7)	5.5 (4.8–6.4)	6.0 (5.3–6.9)
Type of hemorrhage				
Intracranial	194 (5.3)	0.4 (0.3–0.4)	0.1 (0.1–0.1)	0.2 (0.1–0.2)
Upper gastrointestinal	1 055 (28.6)	3.9 (3.5–4.3)	0.7 (0.7–0.7)	0.8 (0.8–0.9)
Lower gastrointestinal	1 268 (34.4)	3.5 (3.2–3.9)	0.9 (0.9–0.9)	1.0 (1.0–1.0)
Other	1 406 (38.2)	3.3 (3.0–3.7)	1.0 (1.0–1.0)	1.1 (1.1–1.1)

Age ≤ 75 yr, no.	3684	9.2 (8.4–10.2)	2.6 (2.5–2.7)	2.9 (2.8–3.0)
CHADS₂ score				
0	382 (10.4)		1.8 (1.6–2.0)	
1	1 204 (32.7)			(2.1–2.4)
2–3	1 881 (51.1) In	tracranial Hemorr	hage 5%	3.7–4.0)
4–6	217 (5.9)		nage e /	,5.3–6.9)
Type of hemorrhage				
Intracranial	194 (5.3)	V.		0.2 (0.1–0.2)
Upper gastrointestinal	1 055 (28.6)	3.9 (3.5–4.3)	U.7 (0.7–0.7)	0.8 (0.8–0.9)
Lower gastrointestinal	1 268 (34.4)	3.5 (3.2–3.9)	0.9 (0.9–0.9)	1.0 (1.0–1.0)
Other	1 406 (38.2)	3.3 (3.0–3.7)	1.0 (1.0–1.0)	1.1 (1.1–1.1)

Age <75 Years

Age ≤ 75 yr, no.	3684	9.2 (8.4–10.2)	2.6 (2.5–2.7)	2.9 (2.8–3.0)
CHADS ₂ score				
0	382 (10.4)			1.8 (1.6–2.0)
1	1 204 (32.7)			(2.1–2.4)
2–3	1 881 (51.1)	0 20/		3.7–4.0)
4–6	217 (5.9)			,5.3–6.9)
Type of hemorrhage				
Intracranial	194 (5.3)			0.2 (0.1–0.2)
Upper gastrointestinal	1 055 (28.6)	3.9 (3.5–4.3)	0.7 (0.7-0.7)	0.8 (0.8–0.9)
Lower gastrointestinal	1 268 (34.4)	3.5 (3.2–3.9)	0.9 (0.9–0.9)	1.0 (1.0–1.0)
Other	1 406 (38.2)	3.3 (3.0–3.7)	1.0 (1.0–1.0)	1.1 (1.1–1.1)

Age > 75 yr, no.	7 156	13.7 (12.7–14.6)	4.1 (4.0–4.2)	4.6 (4.5–4.7)
CHADS ₂ score				
0	0 (0.0)	—	—	—
1	641 (9.0)	8.5 (6.6–10.9)	2.8 (2.6–3.1)	3.1 (2.9–3.4)
2–3	5 172 (72.3)	13.8 (12.8–15.0)	4.0 (3.9–4.1)	4.5 (4.4–4.6)
4–6	1 343 (18.8)	17.3 (14.6–20.3)	6.1 (5.7–6.4)	6.8 (6.4–7.1)
Type of hemorrhage				
Intracranial	355 (5.0)	0.5 (0.4–0.5)	0.2 (0.2–0.2)	0.2 (0.2–0.2)
Upper gastrointestinal	1 774 (24.8)	4.1 (3.8–4.3)	1.0 (1.0–1.0)	1.1 (1.1–1.2)
Lower gastrointestinal	2 688 (37.6)	5.5 (5.1–5.9)	1.5 (1.5–1.6)	1.7 (1.7–1.8)
Other	2 784 (38.9)	5.7 (5.3–6.1)	1.6 (1.5–1.6)	1.8 (1.8–1.8)

Age> 75 years

Age > 75 yr, no.	7 156	13.7 (12.7–14.6)	4.1 (4.0–4.2)	4.6 (4.5–4.7)
CHADS ₂ score				
0	0 (0.0)		-	
1	641 (9.0)		(2.9–3.4)	
2–3	5 172 (72.3)	Intracranial Hemor	4–4.6)	
4–6	1 343 (18.8)	Intracramar hemorrhage 570		.4–7.1)
Type of hemorrhage				
Intracranial	355 (5.0)			0.2 (0.2–0.2)
Upper gastrointestinal	1 774 (24.8)	4.1 (3.8–4.3)	, 1.0–1.0)	1.1 (1.1–1.2)
Lower gastrointestinal	2 688 (37.6)	5.5 (5.1–5.9)	1.5 (1.5–1.6)	1.7 (1.7–1.8)
Other	2 784 (38.9)	5.7 (5.3–6.1)	1.6 (1.5–1.6)	1.8 (1.8–1.8)

Age> 75 years

Age > 75 yr, no.	7 156	13.7 (12.7–14.6)	4.1 (4.0–4.2)	4.6 (4.5–4.7)
CHADS ₂ score				
0	0 (0.0)			-
1	641 (9.0)			(2.9–3.4)
2–3	5 172 (72.3)			4–4.6)
4–6	1 343 (18.8)			.4–7.1)
Type of hemorrhage				_
Intracranial	355 (5.0)			0.2 (0.2–0.2)
Upper gastrointestinal	1 774 (24.8)	4.1 (3.8-4.2,	1.0)	1.1 (1.1–1.2)
Lower gastrointestinal	2 688 (37.6)	5.5 (5.1–5.9)	1.5 (1.5–1.6)	1.7 (1.7–1.8)
Other	2 784 (38.9)	5.7 (5.3–6.1)	1.6 (1.5–1.6)	1.8 (1.8–1.8)

Bleeding score

► HEMORR₂HAGES

Wednesday, October 23, 2013

HAS-BLED

HAS-BLED	Score
Hypertension, i.e. uncontrolled BP	1
Abnormal renal/liver function	1 or 2
Stroke	1
Bleeding tendency or predisposition	1
Labile INRs (if on warfarin)	1
Age (e.g. >65 , frail condition)	1
Drugs (e.g. concomitant aspirin or NSAIDs) or alcohol excess/abuse	1

9

_

HAS-BLED

HAS-BL	Score
Hyperter	1
Abnorma should not on its own be used to	1 or 2
Stroke exclude patients from OAC therapy	1
Bleeding	1
Labile IN	1
Age (e.g. $>$ 65, trail condition)	1
Drugs (e.g. concomitant aspirin or NSAIDs) or alcohol excess/at	ouse 1
	9

Wednesday, October 23, 2013

Thank You

Wednesday, October 23, 2013