

Correlation of LV Longitudinal Strain by 2D Speckle Tracking with Cardiovascular risk in Elderly.

(A pilot study of EGAT-Echo study.)

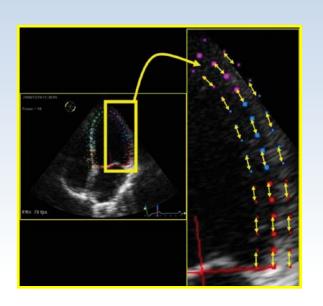
Researcher: Dr. Atthakorn Wutthimanop, MD.

Research adviser: Dr.PrinVathesathokit, MD.

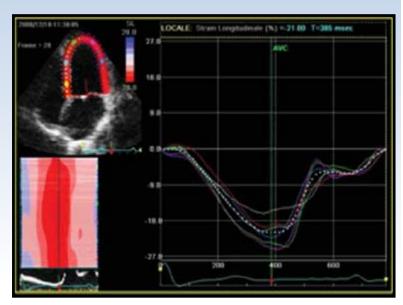
Dr. SukitYamwong, MD.

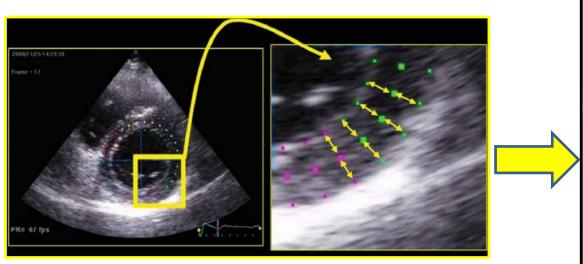
Dr. Oraporn See, MD.

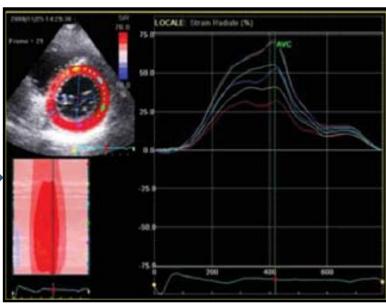
Dr.Piyamitr Sritara, MD.

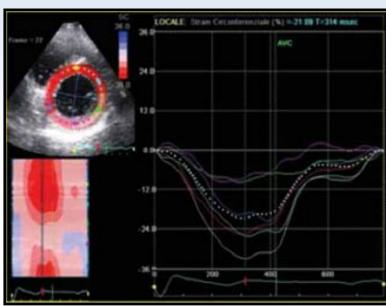

Ramathibbodi hospital

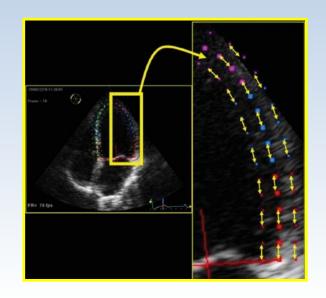
INTRODUCTION

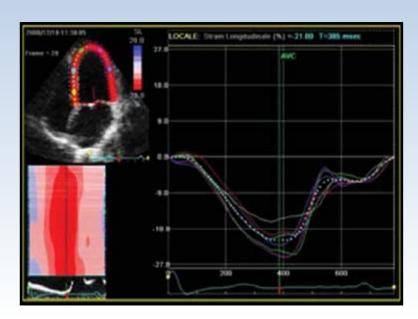

Echocardiogram is a standard procedure in evaluation of Left ventricular function


 2 D speckle tracking is a new tool to measure myocardial deformation and allow quantitative analysis of global and regional myocardial function

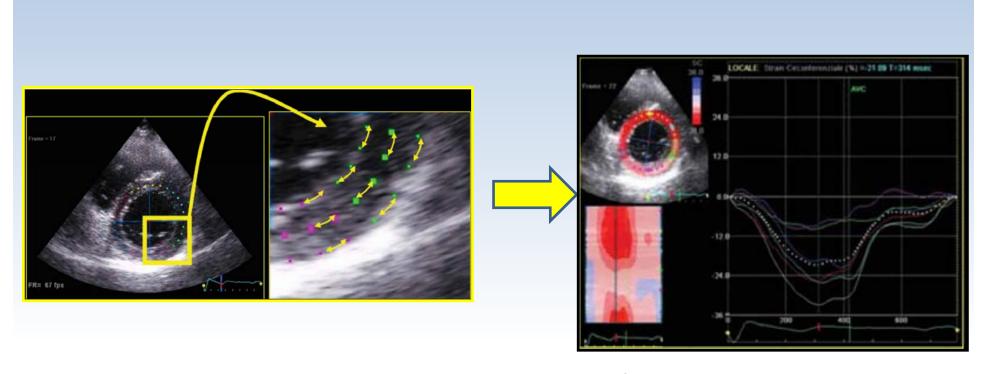

Speckle tracking: strain







Speckle tracking: Strain


- Tissue imaging evaluation myocardial deformation
- Good Quantitative assessment
- Angle independence
- Validated to CMR and Sonomicrometry
- Minimal bias (low intra and interobserver variability)

INTRODUCTION

- Left ventricular function altered with age and previous study had shown reduction of longitudinal strain in elderly (1)
- Longitudinal strain was shown to be impaired before other directions of strain in those with cardiovascular risk and without overt cardiac disease (2)

1. Jing Ping Sun et al. Int J cardiol; 2012

2. J Am Soc Echocardiogram 2008; 21: 1138-1144.

- Non invasive for assessment of LV (Global and and regional) deformation and torsion
- Angle independence
- Validated to CMR and Sonomicrometry
- Minimal bias (low intra and interobserver variability)
- Valid in patient with and without RWMA

INTRODUCTION

- There are no study of correlation to demonstrate relationship between left ventricular longitudinal strain by 2D speckle tracking and cardiovascular risk factors in Thai elderly.
- This study will be the pilot study of relationship between ventricular longitudinal strain and cardiovascular risk factors.

Objective

Primary outcome

Determination of the relationship between 2D STE of LV longitudinal strain in elderly with and without cardiovascular risk.

Secondary outcome

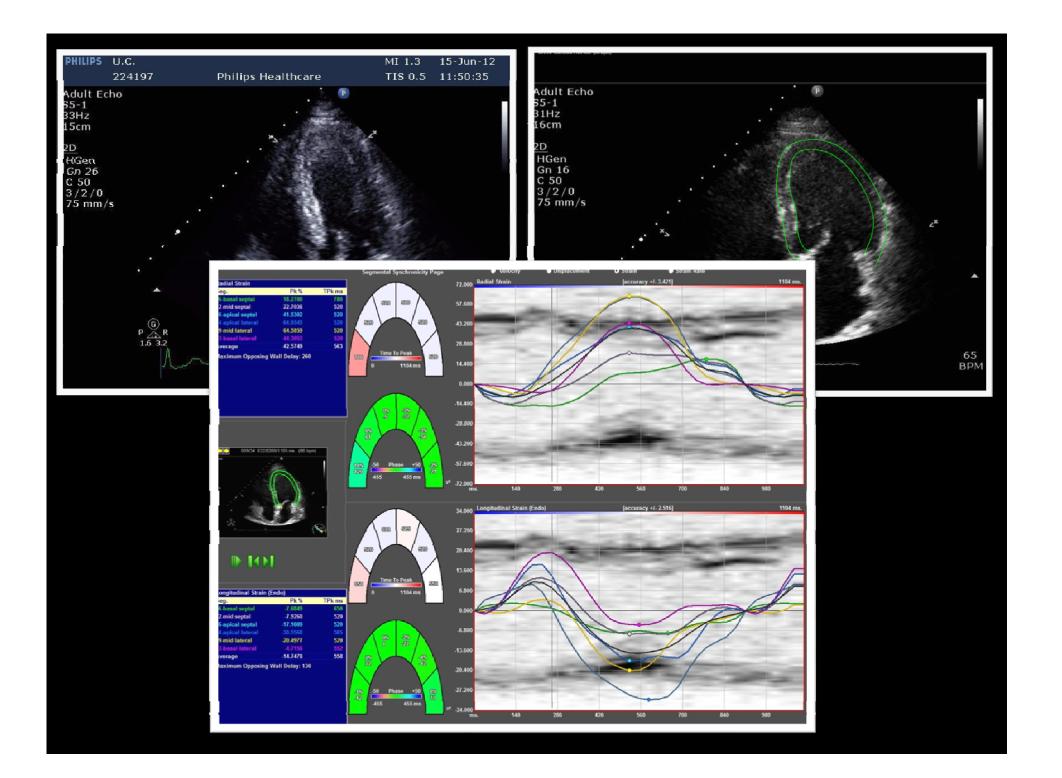
Demonstrating correlation 2 D STE longitudinal strain and CAVI.

Data collection

Cardiovascular disease risk factors (CVD risk factors) data collection

HT Age

Diabetes mellitus Gender


Tobacco use Kidney function

History of CVA,MI BMI

Dyslipidemia

Echocardiography data

All raw datasets were transferred to the core laboratory of Ramathibodi hospital. The LV Longitudinal Strain by 2-D speckle tracking analysis was performed using speckle tracking software from **Tomtec software**.

Study design/Statistic

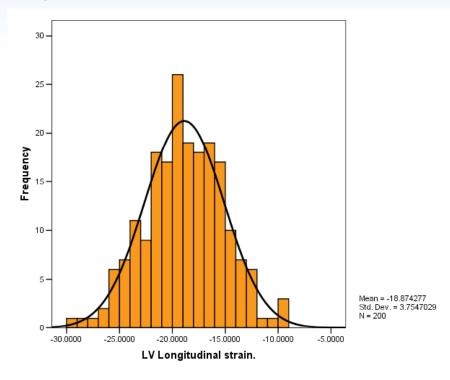
Study design

Crossectional -Correlational research design.

Statistic

- Descriptive statistics, mean, standard deviation, absolute number, percentage will used for subject demographic explanation.
- Univariate regression and Multivariate regression (stepwise method) analysis will be used for demonstrating correlation between LV Left ventricular 2 D speckle tracking longitudinal strain with cardiovascular risk in the elderly and CAVI.
- A p-value <0.05 was considered statistically significant. All statistics analysis are calculated by SPSS 16.0 Program.

Results


Baseline characteristics

Baseline characteristics

Total 350subjects underwent echocardiogram was reviewed. There were 200 subjects to calculate LV Longitudinal strain because 150 subjects were excluded due to poor echocardiogram images.

LV Longitudinal strain (N= 200 subjects)

- Mean + SD = -18.8743 + 3.7547
 95%Cl = -19.3978 to -18.3507
- Kolmogorov-Smirnov test (K-S test)
 p-value = 0.200>> normal distribution

		Mean <u>+</u> SD	n	n %
Left ventricular mass (g)	214.4 <u>+</u> 84.1			
Left ventricular C (g) (n=	=192)	172.1 <u>+</u> 67.3		
Ejection fraction (%) (n=	÷192)	71.43 <u>+</u> 9.58		
Left ventricular Longitud	linal strain (n=200)	-18.8743 <u>+</u> 3.7547		
Age at echocardiogram (years) (n=196) (60 – 82 yr)	68.98 <u>+</u> 4.91		
Gender (n=199)	Female		73	36.68%
	Male		126	63.32%
Hypertension (n=200)	Have not hypertension		91	45.50%
	Have hypertension.		109	54.50%
Smoking (n=198)	Never smoking.		110	55.56%
	Smoker (Both current and former).		88	44.44%
Diabetes mellitus (n=200) Have not Diabetes mellitus.		158	79.00%
	Have Diabetes mellitus.		42	21.00%
Stroke (n=200)	Have not experienced stroke		197	98.50%
	Have experienced stroke		3	1.50%
Dyslipidemia (n=200)	Have not dyslipidemia		46	23.00%
	Have dyslipidemia		154	77.00%

		Mean <u>+</u> SD	n	n %
CAD (n=200)	Have not current or previous CAD		188	94.00%
	Have current or previous CAD		12	6.00%
BMI (kg/m^2) $(n=194)$		24.10 <u>+</u> 2.91		
Weight (n=194)	Normal weight		123	63.40%
	Over weight		67	34.54%
	Obesity		4	2.06%
Age risk (n=196)	Male <= 55 and Female <=65 years		19	9.69%
	Male > 55 and Female > 65 years		177	90.31%
GFR (n=195)	Normal GFR		109	55.9%
	Abnormal GFR (< 60 ml/min)		86	44.1%
Peripheral Artery disease	Have not PAD as underlying		196	98.99%
(PAD)			190	98.99%
(n=198)	Have PAD as underlying disease		2	1.01%

		Mean \pm SD	n	n %
Cardio-Ankle Vaso	cular Index (CAVI) (n=181)			
Right CAVI score		9.04 <u>+</u> 1.27		
Left CAVI score		9.01 <u>+</u> 1.30		
CAVI criteria	Normal (CAVI score 8.0)		20	11.05%
	Border line $(9 > CAVI >= 8)$		59	32.60%
	Possible CAVI >= 9 Arteroisclerosis		102	56.35%

			Mean \pm SD	n	n %
Cardio-Ankle Vascular					
Right CAVI score			9.04 <u>+</u> 1.27		
Left CAVI score			9.01 <u>+</u> 1.30		
CAVI criteria	Normal (CAVI	score 8.0)		20	11.05%
	Border line (9 >	> CAVI >=8)		59	32.60%
	Possible CAVI	>=9 Arteroisclerosis		102	56.35%
Ankle Brachial Index					
Left Ankle Brachial Inde	ex (n=182)		1.11 <u>+</u> 0.09		
Left Ankle Brachial Inde	ex No:	rmal		182	100.00%
	Ab	normal (ABI <0.9)		0	.00%
Right Ankle Brachial Inc	dex (n=182)		1.12 <u>+</u> 0.10		
Right Ankle Brachial Inc	dex No	rmal		182	100.00%
	Ab	normal (ABI <0.9)		0	.00%
Ankle Brachial Index (r	Index (n=182) Normal			182	100.00%
	Ab	normal (ABI <0.9)		0	.00%

		Mean <u>+</u> SD	n	n %
Lipid profile test				
Total Cholesterol (n=200)		205.80 <u>+</u> 43.27		
Cholesterol level	<240 mg/dL		163	81.50%
	≥240 mg/dL		37	18.50%
Triglyceride (n=200)		122.85 <u>+</u> 62.96		
Triglyceride level	< 200 mg/dL		183	91.50%
	≥200 mg/dL		17	8.50%
HDLC (n=200)		61.55 <u>+</u> 18.05		
HDLC level	\geq 40 mg/dL		188	94.00%
	<40 mg/dL		12	6.00%
LDLC (n=200)		133.14 <u>+</u> 37.03		
LDLC level	< 160 mg/dL		157	78.50%
	\geq 160 mg/dL		43	21.50%
Lipid Profile test	Normal Lipid Profile test		136	68.00%
	Abnormal Lipid Profile test		64	32.00%

		Mean <u>+</u> SD	n	n %
FBS \geq =126 mg/dl and/or HbA1C \geq 6.5%	No		165	82.50%
(n=200)	Yes		35	17.50%

- Linear regression analysis was used to demonstrate relationship between LV longitudinal strains with each factor.
- The significant relation factors for LV longitudinal strain were
 - Gender (*p*-value 0.001)
 - Hypertension (*p*-value 0.002)
 - Smoking (p-value 0.011)
 - Diabetes mellitus (p-value < 0.001)
 - Coronary artery disease (p-value 0.002)

		n	Left ventricular LG strain Mean <u>+</u> SD	Adjusted r ²	В	95% CI	p-value*
Male Gender	No	73	-19.9573 ± 3.5822		1.000	Reference	
	Yes	126	-18.2054 ± 3.7011	0.046	1.752	0.691 to 2.813	0.001*
Hypertension	No	91	-19.7468 <u>+</u> 3.4890		1.000	Reference	
	Yes	109	-18.1459 <u>+</u> 3.8282	0.040	1.601	0.571 to 2.631	0.002*
Current smoker or former	No	110	-19.4366 <u>+</u> 3.6345		1.000	Reference	
smoker	Yes	88	-18.0855 ± 3.7699	0.027	1.351	0.309 to 2.393	0.011*
Diabetes mellitus	No	158	-19.4215 <u>+</u> 3.7211		1.000	Reference	
	Yes	42	-16.8157 <u>+</u> 3.1479	0.076	2.606	1.370 to 3.842	<0.001*
Stroke	No	197	-18.8560 ± 3.7608		1.000	Reference	
	Yes	3	-20.0739 ± 3.8017	-0.003	-1.218	-5.533 to 3.097	0.578
Dyslipidemia	No	46	-19.1225 <u>+</u> 3.9226		1.000	Reference	
	Yes	154	-18.8001 <u>+</u> 3.7131	-0.004	0.322	-0.924 to 1.569	0.611
CAD	No	188	-19.0762 <u>+</u> 3.6985		1.000	Reference	
	Yes	12	-15.7113 <u>+</u> 3.3007	0.046	3.365	1.206 to 5.524	0.002*
Weight	Normal	123	-18.8072 ± 3.8154		1.000	Reference	
	Overweight and	71	-18.8473 <u>+</u> 3.6698	0.000	-0.040	1.370 to 3.842	0.943
	Obesity						

		n	Left ventricular LG strain Mean <u>+</u> SD	Adjusted r ²	В	95% CI	p-value*
Male > 55 and Female > 65	No	19	-20.1622 ± 3.0920		1.000	Reference	
years	Yes	177	-18.6719 ± 3.8040	0.014	1.490	-0.292 to 3.273	0.101
Abnormal kidney function	No	110	-19.1655 <u>+</u> 3.5918		1.000	Reference	
	Yes	88	-18.4495 <u>+</u> 3.9344	0.004	0.716	-0.341 to 1.773	0.183
Peripheral Artery disease	No	196	-18.8235 ± 3.7664		1.000	Reference	
(PAD)	Yes	2	-21.1739 ± 0.9283	-0.001	-2.350	-7.617 to 2.916	0.380
Chronic Kidney Disease	No	191	-18.8993 <u>+</u> 3.7552		1.000	Reference	
	Yes	7	-17.4286 ± 3.7441	0.000	1.471	-1.379 to 4.320	0.310
Abnormal GFR	No	109	-19.0867 ± 3.6033		1.000	Reference	
(< 60 ml/min)	Yes	86	-18.4343 <u>+</u> 3.9346	0.002	0.652	-0.415 to 1.720	0.230

		n	Left ventricular LG strain Mean <u>+</u> SD	Adjuste d r ²	В	95% CI	p-value*
Cardio-Ankle Vascular Index (CAVI)	Normal (CAVI < 8.0)	20	-18.1978 ± 3.3924		1.000	Reference	
	Border line and Possible Arteroisclerosis (9 > CAVI >=8) And CAVI >=9)		-19.0864 ± 3.8150	0.000	-0.889	-2.654 to 0.876	0.322
FBS >=126	No	183	_		1.000	Reference	
	Yes	17	-17.5588 <u>+</u> 3.5309	0.006	1.438	-0.434 to 3.309	0.131
HbA1C > 6.5%	No	172	-19.1560 ± 3.7172		1.000	Reference	
	Yes	28	-17.1440 <u>+</u> 3.5756	0.030	2.012	0.526 to 3.498	0.008*

Multivariate analysis

Multivariate analysis

- Multivariate Regression analysis, stepwise method was analyzed to demonstrate relationship between LV longitudinal strain with significant factors from univariate analysis.
 - Gender
 - Hypertension,
 - Smoking,
 - Diabetes mellitus,
 - Coronary artery disease

Multivariate analysis

Multivariate analysis

• The result shown that diabetes mellitus, coronary artery disease, and HT were significant risk factors strongly associated with LV longitudinal strain (p-value = < 0.001, Adjusted r^2 = 0.127)

Unstandardized		standard ized	C:a	05	0/ 1	Adju	n valua		
	В	Std. Error	Beta	Sig. 95% CI		sted r ²	p-value		
Constant	-20.092	0.376		0.000	-20.833	to	-19.350		
Diabetes mellitus	2.315	0.622	0.252	0.000	1.089	to	3.541	0.127	< 0.001
CAD	2.955	1.056	0.187	0.006	0.872	to	5.037	0.127	< 0.001
Hypertension	1.016	.514	0.135	0.049	0.003	to	2.030		

Regression model show LV longitudinal strain of the subject without diabetes mellitus, coronary artery, and COPD were -20.092 (95% CI = -20.833 to -19.350).

Multivariate analysis

Multivariate analysis

- The result shown that diabetes mellitus, coronary artery disease, HT were significant risk factors strongly associated with LV longitudinal strain (p-value = < 0.001, Adjusted r^2 = 0.130).
- Regression model show LV longitudinal strain of the subject without diabetes mellitus, coronary artery, and COPD were

-19.569 (95% CI = -20.136 to -19.002).

Conclusion

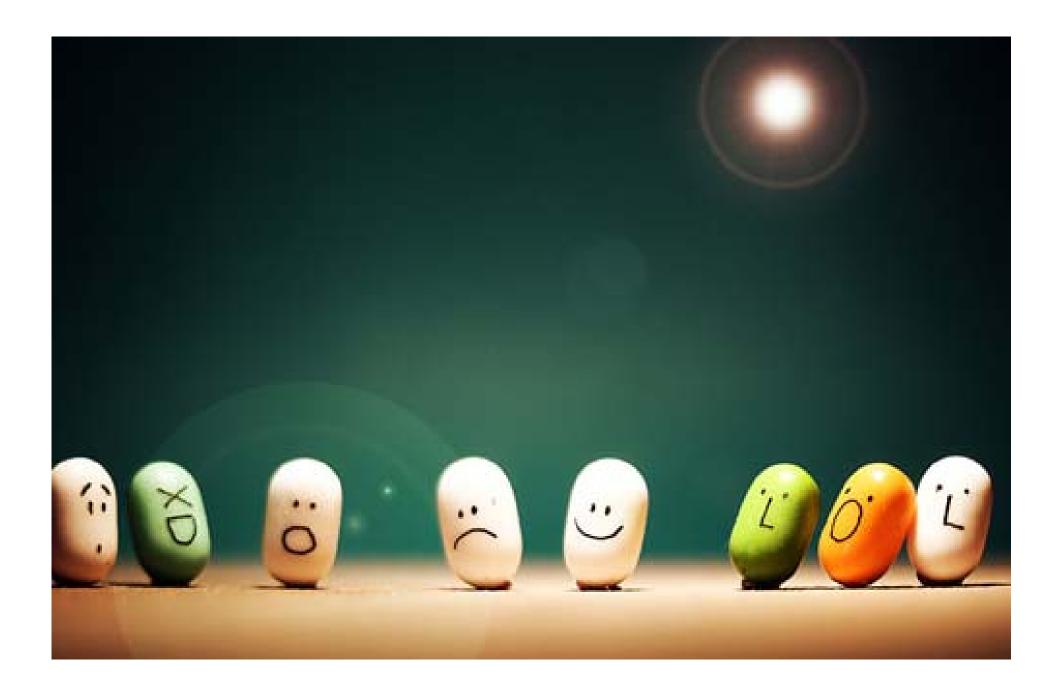
 Diabetes mellitus, coronary artery disease, and HT were significant risk factors strongly associated with LV longitudinal strain.

(The subjects without theses factor will have longer LV strain than the subjects who have DM, CAD and HT)

• There was **no** relationship between CAVI and LV strain.

Conclusion

- Diabetes mellitus, coronary artery disease, and COPD were significant risk factors strongly associated with LV longitudinal strain. The subjects without theses factor will have longer LV strain than the subjects who have DM, CAD and COPD.
- Regression model between DM, CAD and COPD and LV was LV longitudinal strain


```
= (-20.092) + 2.315 (DM 0, 1) + 2.955 (CAD 0, 1) + 1.016 (HT 0,1)
```

Normal LV Longitudinal Strain in elderly was

There was no relationship between CAVI and LV strain.

Acknowledge

ศ.นพ.ปิยะมิตร ศรีธรา อ.นพ.สุกิจ แย้มวงศ์ อ.พญ.อรพร สีห์ อ.นพ.ปริญญ์ วาทีสาธกกิจ คุณนิศากร ทองมั่ง ทีมงาน EGAT

