

RESISTANCE TRAINING (RT)

<u>Definition</u>: Active exercise (a dynamic or static muscular contraction) in which muscle contraction is resisted by an outside force. This outside force may be manual or mechanical.

<section-header><section-header><text><text>

Muscle

- Increase of the cross sectional area of the muscle due to

- Increase myofibril per muscle fiber
- fibers splitting
- Increase number of muscle fiber
- Increase protein content of the muscle fiber.
- Increase energy source necessary to fuel muscle
 - contraction and increase levels of ATP, and creatine

phosphate.

10

PHYSIOLOGIC ADAPTATION IN RT

Connective tissue Adaptation :

- Alter tendon and ligament structure make them larger

stronger and more resistance to injury

- Increase tensile strength of tendon and ligament

Bone:

- Improve and maintain bone density.

Variable	Strength Training Adaptations	Endurance Training Adaptations
Skeletal muscle structure	Hypertrophy of muscle fibers; greater in type II fibers	Hypertrophy: minimal or no change
	Hyperplasia (possibly) of muscle fibers	
	Fiber type composition: remodeling of type	
	IIB to type IIA; no change in type I to type	
	II distribution (i.e., no conversion)	
	Capillary bed density: \downarrow or no change	Capillary bed density: ↑
	Mitochondrial density and volume: 4	Mitochondrial density and volume: T
Neural system	Motor unit recruitment: ↑ # motor units firing	
	Rate of firing: \uparrow (\downarrow twitch contraction time)	
	Synchronization of firing: T	
Metabolic system	ATP and CP storage: ↑	ATP and CP storage: 1
	Myoglobin storage: T	Myoglobin storage: T
	Stored triglycerides: not known	Stored triglycerides: T
Enzymes	Creatine phosphokinase: 1	Similar T
	Myokinase: 1	Similar 1
Body composition	Lean body (fat-free) mass:	Lean body (fat-free) mass: no change
	T % body fat: ↓	% body fat: ↓
Connective tissue	Tensile strength of tendons, ligaments, and	Tensile strength of tendons, ligaments
	connective tissue in muscle: T	and connective tissue in muscle: T
	Bone: I bone mineral density; no change or	Bone: T mineralization with weight-
	possible 1 in bone mass	bearing activities

Hormone	Acute response to RE	Chronic Resting Adaptations	Chronic changes to acute response
Testosterone	May! , \leftrightarrow ," , is likely with high intensity, short rest interval, high-volume	Typically ↔ unless there are substantial changes in volume and intensity	May! slightly if individual can train at high level
GH	! or ↔ with low intensity, low - volume ! when high intensity and volume programs with short rest	↔ ; however, overnight "bursts" may! if workout is strenuous	Acute ! can be higher when individuals train harder over time
Insulin	↔ ,response related to diet or plasma volume "	↔	\leftrightarrow
IGF-1	Delayed response base on GH secretion pattern	Related to GH changes, ↔ or ! IGF-1 in muscle !	Related to GH
Cortisol	! or ↔ with low intensity, low - volume ! when high intensity and volume programs with short rest	$\leftrightarrow;"$; may $!~$ with overtraining	May not change
Catecholamine	! during workout and before in anticipation	⇔	↔
	American Co Testing an	llege of Sport Medicine. Resource Ma d Prescription 6 th ed.Pheiladelphia,Lip	nual for Guidelines for Exercise pincott Williams&Wilkins 2010

PHYSIOLOGICAL ADAPTATIONS TO RESISTIVE EXERCISE

- Cardiovascular system
- Increase cardiac output
- Increase stroke volume
- Increase maximal oxygen consumption
- Decreased diastolic blood pressure.

Variable	Aerobic Exercise	Resistance Exercise	
Bone mineral density	↑ ↑	↑ ↑	
Body composition			
% Fat	$\downarrow \downarrow$	Ļ	
LBM	↔	↑ ↑	
Strength	\leftrightarrow	$\uparrow \uparrow \uparrow$	
Glucose metabolism			
Insulin response to glucose challenge	$\downarrow \downarrow$	$\downarrow \downarrow$	
Basal insulin levels	Ļ	\downarrow	
Insulin sensitivity	↑ ↑	↑ ↑	
Serum lipids			
HDL	↑↔	↑↔	
LDL	$\downarrow \leftrightarrow$	$\downarrow \leftrightarrow$	
Resting heart rate	$\downarrow \downarrow$	\leftrightarrow	
Stroke volume, resting and maximal	↑ ↑	\leftrightarrow	
Blood pressure at rest			
Systolic	$\downarrow \leftrightarrow$	\leftrightarrow	
Diastolic	$\downarrow \leftrightarrow$	$\downarrow \leftrightarrow$	
Żo₂max	$\uparrow \uparrow \uparrow$	^↔	
Submaximal and maximal endurance time	111	↑ ↑	
Basal metabolism	↑	↑ ↑	

	R					
				and the second second		
Madamaa internet					-	
due to arterial st	ties	of ex	erc	ise is recomme	ince	
que to al terial st	mme	255				
Net change of dia	astc	lic blo	boc	pressure of 3.	5 mmHg	
					•	
	Ba	iseline		Net change		
Variable	n	Mean	n	Mean (95% CL)	P value	
Blood pressure (mmHg)					0.40	
Blood pressure (mmHg) Systolic	12	131.0	12	-3.2 (-7.1, +0.7)	0.10	
Blood pressure (mmHg) Systolic Diastolic	12 12	131.0 81.1	12 12	-3.2 (-7.1, +0.7) -3.5 (-6.1, -0.9)	0.10 < 0.01	
Blood pressure (mmHg) Systolic Diastolic VO _{2max} (mL/min per kg)	12 12 9	131.0 81.1 24.7	12 12 6	-3.2 (-7.1, +0.7) -3.5 (-6.1, -0.9) +2.6 (+0.3, +4.8)	0.10 < 0.01 < 0.05	
Blood pressure (mmHg) Systolic Diastolic VO _{2max} (mL/min per kg) Heart rate (b.p.m.)	12 12 9 10	131.0 81.1 24.7 70.7	12 12 6 8	-3.2 (-7.1, +0.7) -3.5 (-6.1, -0.9) +2.6 (+0.3, +4.8) +1.0 (-1.7, +3.7)	0.10 < 0.01 < 0.05 NS	
Blood pressure (mmHg) Systolic Diastolic VO _{2max} (mL/min per kg) Heart rate (b.p.m.) Weight (kg)	12 12 9 10 8	131.0 81.1 24.7 70.7 76.4	12 12 6 8 4	-3.2 (-7.1, +0.7) -3.5 (-6.1, -0.9) +2.6 (+0.3, +4.8) +1.0 (-1.7, +3.7) +0.33 (-2.7, +3.4)	0.10 < 0.01 < 0.05 NS NS	

рт				CTIFENIECC
KI	AND	AIE	:KIAL	STIFFINESS
and the second second	Charles and S		Services of States Inc.	
	Authors	Training Intensity	Outcome	Mean difference IV,random,95% CI (% Change)
Young(<40 yrs)	Miyachi 2004	High	Carotid ß	
	Kawano 2006	Moderate	Carotid ß	
	Okamoto 2006	High	baPWVV	
	Okamoto 2009-2	High	baPWV	
	Okamoto 2009-1	High	baPWV	-
	Subtotal (95%CI)			+
Middle-aged(>40yrs)	Cortez-2008	Moderate	cfPWV	-
	Collier 2008	Moderate	cfPVVV	
	Yoshizawa 2009	Moderate	cfPVVV	-
	Subtotal (95%CI)			
				~ 0
	Total (95%CI)			•

RT IN DM
 Light or moderate intensities are effective for controlling blood glucose in T2DM
 Increased glucose uptake observed after RT solely to the increase in muscle mass
 RT can effectively alter body composition in both men and women.
 Increase total FFM, muscular strength, and RMR, as well as reduce total FM with the preferential mobilization of VAT and SAT in the abdominal region

<u> </u>	RT IN METABOLIC SYN	<u>DROME</u>	
nary	y and secondary of	outcomes for stu	<u>idies</u>
inc	luded in meta-ana	<u>alysis</u>	
Ν	X(95% CI)	Q (p)	12
dl)			
30	-5.5 (-9.4, -1.6)*	102.6 (<0.001)**	71.7
28	0.7 (-1.2, 2.6)	211.5 (<0.001)**	87.2
14	-0.5 (-0.9, -0.2)*	96.7 (<0.001)**	86.6
26	-8.7 (-14.1, -3.3)*	234.2 (<0.001)**	89.3
23	-6.1 (-11.2, -1.0)*	152.2 (<0.0001)**	85.5
20	-81 (-145 -18)*	89.4 (<0.001)**	72.0

8.2 (0.99)

14.5 (0.34)

30.6 (0.006)**

25.1 (0.03)**

< 0.0001

10.6

54.2

44.1

Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Prev Med. 2009 Jan;48(1):9-19.

0.003 (-0.4, 0.4)

-0.2 (-0.2, 0.1) -1.8 (-2.5, -1.1)*

1.0 (0.4, 1.5)*

Changes in prin

Primary outcomes (mg/

Secondary outcomes - Body weight (kg)

- BMI (kg/m²)

- Body fat (%)

- LBM (kg)

21

14

15

15

Variable

- TC - HDL-C - TC/HDL-C - Non-HDL-C - LDL-C - TG

23

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	p Value 0.014* <0.0001
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	p Value 0.014* <0.0001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	p Value 0.014* <0.0001
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	p Value 0.014* <0.0001
Body mass (kg) 89.2 ± 14.5 0.70 ± 2.36 0.110 89.3 ± 10.8 -1.54 ± 2.59 0.003^{*} 90.1 ± 13.2 -1.90 ± 3.58 Peak oxygen consumption 26.5 ± 6.35 1.22 ± 3.14 0.037^{*} 28.4 ± 5.96 3.33 ± 3.95 $<0.0001^{*}$ 28.8 ± 6.48 3.67 ± 3.61 Strength (kg/session) 9.302 ± 3.688 4.212 ± 2.392 $<0.0011^{*}$ NA NA 8.964 ± 2.771 3.425 ± 2.68 high-density (hyporportion) 46.8 ± 13.9 -0.63 ± 4.81 0.469 41.5 ± 14.2 1.02 ± 0.481 0.250 45.0 ± 11.01 1.55 ± 5.84 cholesterrol (mg/dl) $0.9 \pm 0.1 = 6.55 \pm 32.6$ 0.872 1.5 ± 14.2 1.02 ± 0.026 0.0001^{*} 15.5 ± 9.08 $-21.0 \pm 5.0 \pm 14.49$ <th>0.014* <0.0001</th>	0.014* <0.0001
Peak oxygen consumption 26.5 ± 6.35 1.23 ± 3.14 0.037^{*} 28.4 ± 5.96 $3.33 \pm 3.95 < 0.0001^{*}$ 28.8 ± 6.48 3.67 ± 3.61 (m/kg/min) Strength (kg/session) 9.302 ± 3.688 $4.212 \pm 2.392 < 0.0001^{*}$ NA NA NA 8.964 ± 2.771 3.425 ± 2.68 High-density lipoprotein 46.8 ± 13.9 -0.63 ± 4.81 0.469 41.5 ± 14.2 1.03 ± 4.81 0.250 45.0 ± 11.0 1.55 ± 5.84 cholesterol (mg/dl)	< 0.0001
Strength (kg/session) 9,302 \pm 3,688 4,212 \pm 2,392 <0.0001* NA NA NA 8,964 \pm 2,771 3,425 \pm 2,68 High-density lipoprotein 46.8 \pm 13.9 -0.63 \pm 4.81 0.469 41.5 \pm 14.2 1.03 \pm 4.81 0.250 45.0 \pm 11.0 1.55 \pm 5.84 cholesterol (mg/dl) 140 \pm 81.0 \pm 55 \pm 52.6 0.582 154 \pm 81.3 \pm 21.0 \pm 56.0 0.008 153 \pm 92.0 \pm 20.1 \pm 40.8	
High-density lipoprotein $46.8 \pm 13.9 - 0.63 \pm 4.81 0.469 41.5 \pm 14.2 1.03 \pm 4.81 0.250 45.0 \pm 11.0 1.55 \pm 5.84$ cholesterol (mg/dl) $140 \pm 91.0 - 5.55 \pm 52.6 0.592 154 \pm 91.3 - 21.0 \pm 56.0 0.0408 153 \pm 92.0 - 20.1 \pm 40.95$	< 0.0001
Triphyserides (mg/dl) $140 + 910 - 525 + 526 - 0.592 - 154 + 912 - 210 + 560 - 0.0408 - 152 + 020 - 201 + 40.9$	0.197
$\frac{11}{11} \frac{11}{11} 11$	0.006*
Waist circumference (cm) 104 ± 9.68 0.25 ± 2.45 0.577 $104 \pm 10.1 - 1.12 \pm 3.20$ 0.064 $103 \pm 11.2 - 2.48 \pm 3.78$	0.003*
$Fasting glucose (mg/dl) \qquad 99.8 \pm 11.6 \\ -0.37 \pm 9.22 \\ 0.823 \\ 96.3 \pm 13.4 \\ -0.22 \pm 9.54 \\ 0.902 \\ 90.3 \pm 9.12 \\ 1.86 \pm 7.95 \\ 1.95 $	0.253
Systolic blood pressure 120 \pm 13.2 2.32 \pm 10.8 0.241 122 \pm 13.2 $-0.57 \pm$ 10.7 0.775 118 \pm 14.6 $-3.08 \pm$ 12.0 (mm Hg)	0.210
Diastolic blood pressure 78.8 \pm 9.28 $-0.16 \pm$ 9.85 0.928 80.6 \pm 9.14 $-0.87 \pm$ 8.20 0.567 77.8 \pm 8.36 $-3.32 \pm$ 7.80 (mm Hg)	0.044*
Mean arterial blood 92.7 \pm 10.2 0.67 \pm 9.46 0.697 94.3 \pm 9.81 $-$ 0.77 \pm 7.59 0.584 91.2 \pm 9.68 $-$ 3.24 \pm 7.76 pressure (mm Hg)	0.048*
Adult Treatment Panel III 2.19 ± 1.28 0.36 ± 0.99 0.054^* 2.63 ± 1.10 -0.03 ± 1.19 0.879 2.28 ± 0.98 -0.64 ± 1.04 score	0.005*
	0.004*
~ U.~ * U.~	
	10220500

	N CHF			
A LO FRANCE	AT	RT	AT+RT	
Exercise capacity				e. Algebic)
Peak VO ₂	↑ ↑	1↔	↑ ↑	
Cardiac function				
Peak cardiac output	↑↔	\leftrightarrow		
Peak stroke volume	Ť	\leftrightarrow		
Ejection fraction	t↔	\leftrightarrow	†⇔	
End-systolic volume	1	\leftrightarrow	\leftrightarrow	
End-diastolic volume	1	\leftrightarrow	\leftrightarrow	
Vascular function				
Endothelial function	↑ ↑	î	1	
Arterial remodeling	1	↑ ↑	?	
Skeletal muscle function				
Muscle strength	↔↑	$\uparrow\uparrow\uparrow$	1	
Muscle endurance	1	↑ ↑	1	
Oxidative enzymes	↑ (Ť	↑ In the second	

CLINICAL IMPORTANT BENEFITS OF RT IN CHF

Guideline	Recommendation	Outcome	Relative difference	Study design
Aerobic exercise: Bicycle ergometer	Grade A Grade A Grade A Grade A	Vo2 max Dyspnea Work Capacity Left ventricular function	18%;255;19% 56% 54%;24% 16%	3 RCT (N =166
Resistance training	Grade A Grade A Grade A Grade A	Left ventricular function Peak lactate levels Muscle strength Muscle endurance	29%;23% 27% 44% 64%	3 RCT (N =47)

HEMODYNAMIC MEASURES DURING DIFFERENT MODALITIES OF EXERCISE IN HE EFFECT OF TREATMENT WITH B-BLOCKER

Parameter	Baseline	Upper Limb (Biceps Curl)	Lower Limb (Dual-Leg Press)	Submaximal Recumbent Cycle	Peak Recumbent Cycle
VO2 ml·kg ⁻¹ ·min ⁻¹					
B-Blockade	3.3 ± 0.2	4.0 ± 0.2	6.1 ± 0.4	9.3 ± 0.4	11.6 ± 0.9
No B-blockade	3.9 ± 0.3	5.0 ± 0.5	7.0 ± 0.5	10.2 ± 0.3	13.7 ± 1.0
CO, I/min					
β-Blockade	5.3 ± 0.5	5.4 ± 0.5	5.4 ± 0.4	5.9 ± 0.6	6.5 ± 0.6
No B-blockade	5.3 ± 0.5	5.5 ± 0.6	5.1 ± 0.3	5.6 ± 0.4	6.4 ± 0.8
HR, beats/min					
β-Blockade	68 ± 5	74 ± 5	84 ± 6	91 ± 6	101 ± 7
No B-blockade	73 ± 3	84 ± 6	89 ± 7	96 ± 7	113 ± 9
SV, ml/beat					
β-Blockade	81 ± 9	77 ± 9	68±8	69 ± 11	66 ± 10
No B-blockade	74 ± 8	68 ± 10	59 ± 5	60 ± 8	60 ± 11
MAP, mmHg					
β-Blockade	84 ± 3	94 ± 4	99 ± 5	96 ± 4	102 ± 2
No B-blockade	79 ± 2	96 ± 6	97 ± 7	95 ± 7	105 ± 10
MPAP, mmHg					
β-Blockade	30 ± 3	31 ± 3	48 ± 6	48 ± 4	52 ± 5
No β-blockade	29 ± 3	30 ± 4	37 ± 4	40 ± 5	43 ± 6
PAWP, mmHg					
β-Blockade	17 ± 2	21 ± 3	36 ± 5	34 ± 3	38 ± 4
No β-blockade	17 ± 2	19 ± 3	25 ± 5	24 ± 4	26 ± 4
CVP, mmHg					
β-Blockade	9 ± 2	9 ± 2	18 ± 3	17 ± 2	19 ± 2
No β-Blockade	8 ± 2	11 ± 3	16 ± 3	16 ± 3	19 ± 3
SVR, dyn-s-cm ⁻⁵					
β-Blockade	$1,148 \pm 107$	$1,131 \pm 127$	$1,167 \pm 121$	$1,225 \pm 172$	$1,184 \pm 165$
No B-blockade	1.159 ± 113	$1,308 \pm 184$	1.291 ± 176	$1,212 \pm 210$	$1,193 \pm 241$

Cheetham C, Green D, Collis J, Dembo L, O'Driscoll G. Effect of aerobic and resistance exercise on central hemodynamic responses in severe chronic heart failure. J Appl Physiol. 2002 Jul;93(1):175-80.

31

35

ACSM RISK ST CARDIOVASC	RATIFICATION CATEGORIES FOR ATHEROSCLEROTIC CULAR DISEASE
Low risk	Asymtomatic men and women who have# I CVD risk factor*
Moderate risk	Asymtomatic men and women who have \$ 2 CVD risk factor*
High risk	Individuals who have known cardiovascular,pulmonary,or metabolic disease or one or more signs and symptoms listed **

TABLE A : ATHEROSCLEROTIC CARDIOVASCULAR DISEASE(CVD) RISK FACTOR THRESHOLDSS FOR USE WITH ACSM RISK STRATIFICATION

Positive risk facto	sitive risk factor Defining Criteria		
Age	Men \$ 45 yr;Women \$ 55 yr		
Family history	MI, Coronary revascularization sudden dath before 55 yr of age in father or other male 1 st degree relative, or before 65 yr of age in mother or female 1 st degree relative		
Smoking	Current cigarette smoker or quit within the previous 6 months or expose toacco smoke		
Sedentary life style	Not participate in at least 30 min of moderate intensity PA on at least 3 days of the week fir at least 3 month		
Hypertension	SBP\$ 140 mmHg , DBP \$ 90 mmHg		
Dyslipidemia	LDL-C \$ 130, HDL-C # 40, Chol \$ 200		
Obesity	BMI \$ 30 , Waist girth \$ 40 inches in men, \$ 35 inches inwomen		
Prediabetes	IFG = FBS \$ 100 < 126		

TABLE B : MAJOR SIGNS OR SYMPTOMS SUGGESTIVE OF CARDIOVASCULAR , PULMONARY, OR METABOLIC DISEASE

Sign or symptom
Pain and discomfort in chest, neck, Jaw, arms,or other areas that may result from ischemia
Shortness of breath at rest or with mild exerction
Dizziness or syncope
Orthopnea or PND
Ankle edema
Palpitation or tachycardia
Intermittent claudication
Known heart murmur
Unusual fatigue or SOB with usual activities

37

 CONTRAINDICATION OF RT

 Diabetics

 - Major risk factors of CHD

 - Diabetics at any age

 - Uncontrolled hypertension (>160/>100 mmHg)

 - Low functional capacity(< 4 METs)</td>

 - Musculoskeletal limitations

 - Individuals who have implanted pacemakers or defibrillators

38

	Resistance Training		Flexibility Training		
Population	Sets; Reps	Stations/Devices*	Frequency	Goal	
Healthy/sedentary adults					
2007 AHA Scientific Statement	1 set; 8–12 reps for persons <50–60 y of age; 10–15 reps at reduced levels of resistance for persons 50–60 y of age	8-10 exercises	2–3 d/wk	Stretching the major muscle or tendon groups, 2–3 d/wk	
2006 ACSM Guidelines ¹¹⁰	1 set; 8–12 reps (range, 3–20 reps) performed at a moderate rep duration (≈3 s concentric, ≈3 s eccentric)	8-10 exercises	2-3 nonconsecutive d/wk	Static stretching, major muscle tendon units a minimum of 2–3 d/wk; stretch to the ROM at a poin of tightness, 15–30 s/stretch, 2–4 reps/stretch	
Elderly persons					
2001 American Geriatrics Society ¹²¹	Low: 40% 1-RM; 10-15 reps	Not specified	2-3 d/wk	3–5 stretches/key muscle group; hold for 20–30 s; 3–5 d/wk	
	Moderate: 40%-60% 1-RM; 8-10 reps				
	High: >60% 1-RM; 6-8 reps				
Cardiac patients					
2007 AHA Scientific Statement	1 set; 10-15 reps	8-10 exercises	2-3 d/wk	Stretching the major muscle or tendon groups, 2-3 d/wk	
2004 AACVPR guidelines ¹¹¹	1 set; 12-15 reps	6-8 exercises	2-3 d/wk		
2006 ACSM guidelines ¹¹⁰	1 set; 10-15 reps	8-10 exercises	2-3 d/wk		

RESISTANCE EXERCISE PRESCRIPTION IN HF

Resistance training	Training Type and stimulus					
	Training objectives	Stress form	Intensity	Repetitions		
Step I-Pre- training	-To learn and practice the correct implementation to learn perception to improve intramuscular co-ordination	Dynamic	<30% IRM RPE <12	5-10		
Step II - Resistance / Endurance training	- To improve local aerobic endurance and intramuscular co -ordination	Dynamic	30-40% RM RPE < 12-13	12-25		
Step III - strength training, Muscle build up training	- To increase muscle mass to improve intramuscular co-ordination	Dynamic	40-60% I RM RPE < 15	8-15		

46

	Activity	Force pounds
	Lift I Ib dumbbell	2
	Lift 3 lb dumbbell	4
	Lift 5 lb dumbbell	6
	Lift 10 lb dumbbell	12.5
FORCES REQUIRED TO PERFORM ADL	Pushing open the door to CR	15.5
	Pulling open door to leave CR	22
	Lifting full laundry hamper	21.5
	D Hold elevator door from closing	14.5
	open refrigerator	9
	Pulling I gallon of milk from refrigerator	10.5
	Closed microwave door	6.5
	Pushing vacuum cleaner	7.5
	Pulling vacuum cleaner	8.5
	Flushing industrial toilet	13.5
	Lifting purse	7.5
	Lifting full coffee pot	6.5
	Opening car door	15.5

PROPER TECHNIQUE FOR RT
Slow controlled movement through the full range of motion
Regular breathing pattern
Avoid strain, tight grip
RPE 11-13 from scale 6-20
Initial load 12-15 rep 30-40 % of 1 RM × UE 50-60% of 1 RM × LE
Progressive increase load 2-5 lb /wk for UE 5 - 10 lb/wk for LE

47

