Aortic Dissection Causes of Death

- Rupture aorta 33.3%
 Unspecified 33.3%
 Neurological deficit 13.9%
 Visceral ischemia/kidney failure 11.5%
- Cardiac tamponade 7.9%

Medical Management

- Detailed medical Hx and complete physical examination
- Intravenous line, blood sample (CK, TnT(I), myoglobin, WBC, D-dimer, Hct, LDH)
- ECG: documentation of ischemia
- HR and BP monitoring
- Pain relief (morphine)
- ↓ SBP using β–blockers, additional vasodilator in patient with sever HT
- Transfer to intensive care unit

Medical Management

- Pain relief and calming
 - Morphine sulphate
- Decrease shearing force and BP
 - Betablocker: HR ~ 60 bpm
 - Calcium channel blocker in COPD patient
- Decrease BP in severe hypertension
 - Addition of vasodilator: Sodium nitroprusside keep BP as low as possible (100-120 mmHg)

Surgical Therapy of Acute Type A Aortic Dissection

- Emergency surgery to avoid tamponade/ aortic rupture
- Valve-preserve surgery
 - Tubular graft *if* normal sized aortic root and no pathological changes of valve cusps
- Replacement of aorta and aortic valve (composite graft) *if* ectatic proximal aorta and/or pathological changes of valve/aortic wall

Indications for Surgery in Type B Aortic Dissection

- Persistent, recurrent chest pain
- Early aortic expansion
- Aortic rupture
- Periaortic hematoma
- Mediastinal hematoma
- Peripheral ischemic complications

Cardiac Tamponade

Pericardiocentasis

CCU Equipment

General intensive care unit Equipment

- Monitoring equipment
 - Non-invasive:
 - Blood pressure, EKG (Telemetry system), Pulse oximetry, Capnometer
 - Invasive
 - Arterial BP monitoring
 - CVP via central line
 - PA catheter PAP, PCWP

- Life support and emergency resuscitation
 - Ventilator
 - Infusion-pump device
 - Emergency cart containing resusitation equipment inclucing defibrillator, airway intubation devices, bag/mask, medication box
 - Central line

General intensive care unit Equipment

- Diagnostic equipment
 - Mobile X-ray Unit
 - Portable echo
 - Portable clinical lab device

- Disposible equipment
 - Arterial and central venous lines
 - Swan-Ganz (PA) catheters
 - Chest and endotracheal tubes
 - GI an NG tubes
 - Monitoring electrodes

ECG Monitoring (Telemetry)

ECG Monitoring Continuous intraarterial blood pressure

CCU equipment

- IABP (Intra-aortic balloon punp)
- Swan-Ganz (PA) catheter
- Defibrillator
- Temporary pacemaker
- Echocardiography (portable)

IABP (Intra-aortic Balloon Pump)

IABP Catheter Placement

Principles of Counterpulsation

Systole:

Diastole: IAB Inflation

- Increase coronary perfusion
 Enhance pulsatile
 - coronary artery flow

Decrease cardiac work

IAB Deflation

- Decrease myocardial oxygen consumption
- Increase cardiac output

Principle of Counterpulsation

Indication for IABP

- Acute myocardial infarction with
 - Cardiogenic shock
 - Refractory angina
 - Mechanical complication e.g., VSD, acute MR from rupture papillary muscl
- Refractory unstable angina
- Ischemic related intractable ventricular arrhythmias

Indication for IABP(2)

- Bridge to cardiac transplantation
- Prophylaxis or support to intervention in high risk patient
- Cardiac support for high risk patient before cardiac surgery
- Support in severe CAD patients for non-cardiac surgery

Contraindication

- Aortic regurgitation
- Abdominal aortic aneurysm or dissection
- Uncontrolled bleeding
- Severe bilateral peripheral vascular disease
- Bilateral femoral popliteal bypass graft of PVD
- Uncontrolled sepsis

Invasive Hemodynamic Monitoring in CCU

Pulmonary Artery Catheter (Swan-Ganz Catheter)

Functions of PA Catheter

- Allows for continuous bedside monitoring of the following
 - Vascular tone, myocardial contractility, and fluid balance can be correctly assessed and managed.
 - Measures Pulmonary Artery Pressures, CVP, and allows for hemodynamic calculated values.
 - Measures Cardiac Output. (Thermodilution)
 - SvO2 monitoring (Fiber optic)
 - Fluid administration.

PA Catheter

Each <u>thin</u> line= 10 cm.
 Each <u>thick</u> line= 50 cm.

Description of PA Catheter Ports/lumens.

CVP Proximal (pressure line - injectate port for CO)-BLUE

PA Distal (Pressure line hook up)- Yellow Extra port - usually- Clear Thermistor – Red Cap

Continuous Cardiac Output and SVO2 monitoring

Indications for PA catheter

- The pulmonary artery catheter is indicated in patients whose cardiopulmonary pressures, flows, and circulating volume require precise, intensive management.
 - MI cardiogenic shock CHF
 - Shock all types
 - Valvular dysfunction
 - Preoperative, Intraoperative, and Postoperative Monitoring
 - ARDS, Burns, Trauma, Renal Failure

Access site Internal jugular or Subclavian vein

Using the Swan-Ganz catheter to diagnose type of shock

Condition	HR	MAP	CO/CI	CVP/RAP	PAP/PAWP	Notes
Left ventricular failure	1	Ļ	Ļ	1	1	
Cardiogenic pulmonary edema	T	N/ 📒	,	1	PAWP > 25mmHg	
Massive pulmonary embolism	1	Ļ	Ļ	1	PAD>PAWP by >5 mmHg	📔 Rulm Vasc Res
Acute vanticular, sental defect	1	Ļ	Ļ	1	giant '√' waves on PAWP trace	O_2 step up noted in SvO ₂
Acute mitral regurgitation	1	Ļ	Î	1	f giant ∨′ waves on PAWP trace	
Cardiac tamponade	1	1	1	1	PAD/PAWP equalised	
Right ventricular failure	1 V	V I	-	1	🚺 PAP 👢 / N PAWP	RVEDV
Hypaxalemic shock	1	Ļ	Ļ	1	L	O ₂ extraction + SVR
Cardiogenic shock	1	Ļ	Ļ	Î	1	TO2 extraction +
Septic shock	1	ļ	11	11	11	O ₂ extraction +

Defibrillators

- Automated External Defibrillators (AED)
- Manual Defibrillators

- New models : may have AED mode

Electrode Placement

- Paddles or Pads
 - Well-separated paddles/pads
 - Bare chest (may need to remove hair by shaving or briskly removing of an adhesive pad; may need to wipe out water or sweat)

Electrode Placement

- Paddles or Pads
 - No paste or gel smeared on the chest between paddles
 - Not place on top of a transdermal medical patch
 - Not place over or close to device generator (eg.
 Permanent pacemaker, AICD)

Electrodes Placement

Standard Paddles Placement

Self adhesive pads Placement

A-P Electrode Placement

Antero-posterior Placement

Defibrillator

- Defibrillation (asynchronous)
- Cardioversion (synchronous)
- Transcutaneous pacing
- Bedside monitoring
 - ECG
 - Pulse oxymeter

Defibrillation : Shockable Arrhythmia

VT : Ventricular Tachycardia (Monomorphic)

VT : Ventricular Tachycardia (Polymorphic)

VF : Ventricular Fibrillation

Synchronized Cardioversion

- Shock delivery that is timed (synchronized) with the QRS complex
 - Avoid shock during the relative refractory period which can cause VF
- Indicated in Unstable tachyarrhythmia associated with
 - Organized QRS complex AND perfusion rhythm (pulse)
- Recommended in Supraventricular tachycardia (SVT), Atrial fibrillation (AF), Atrial flutter, or hemodynamic stable monomorphic VT

Synchronized Cardioversion

- Not used in treatment of
 - -VF
 - Pulseless VT
 - Unstable polymorphic VT
 - \rightarrow No use in sudden cardiac arrest \leftarrow
- Not effective in
 - Junctional tachycardia, ectopic or multifocal atrial tachycardia, sinus tachycardia

Pacemaker

- Permanent Pacemaker
 - Single chamber, Dual chamber, Bi-V pacemaker, etc.
- Temporary Pacemaker → usually used in CCU/ ICU/ Emergency room
 - Transcutneous
 - Transvenous

Transcutaneous Temporary Pacing

- Pacer (Defibrillator with pacer mode)
- Adhesive pads (on chest wall)

Figure 18-32 Transcutaneous pacing. Electrodes are placed on anterior and posterior chest walls and attached to the external pacing unit.

Copyright © 2005 Lippincott Williams & Wilkins. Instructor's Resource CD-ROM to Accompany Critical Care Nursing: A Holistic Approach, eighth edition.

Transvenous Pacing

• External Pacer

• Transvenous pacing wire

Common Access Sites

- Transvenous lead
 - Internal Jugular vein
 - Subclavian/Axillary vein
 - Femoral vein
- Epicardial lead (usually for post open heart surgery)
- Emegency pacing transcutaneous

Indication for transvenous temporary pacemaker

Portable Echocardiography

Echocardiogram

Echocardiogram

