Urban-rural variation in Metabolic syndrome components in Thai adults

Wichai Aekplakorn MD, PhD And the NHES IV study group

Background

- MetS was associated with increased risk of mortality and CVD.
- The prevalence of metabolic syndrome in Thai population aged ≥35 yrs in 4 provinces =32.6% (men 28.7%, women 36.4%) InterAsia.
- Prevalence of the clustering of MetS components varied by age and sex.
- Some studies (eg. China and India) have reported the higher prevalence of MetS among urban population than in rural areas.
- It is not clear how the various combinations of MetS components varied by urban/rural population and if particular combinations of metabolic components are more common in urban or rural populations.
- Understanding the distribution of clustering of MetS components would benefit the design of specific interventions to prevent and control the conditions for the population.

MetS, a heterogeneous group of MetS component

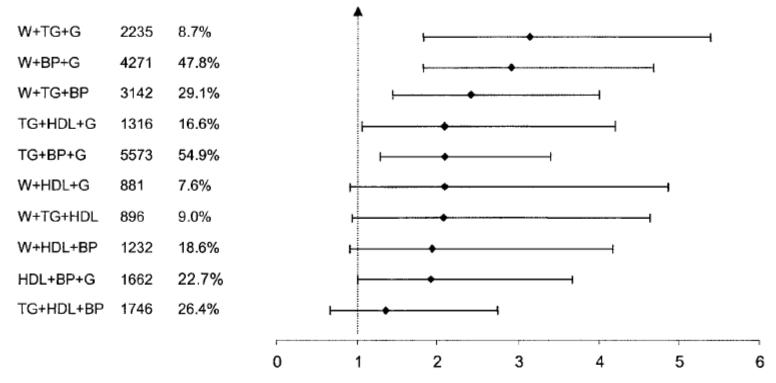
Table 1 – Age-adjusted prevalence (%) of metabolic syndrome components and their combinations with the modATPIII definition and in those with abdominal obesity with the IDF definition by sex and study population

Combinations of MetS components	Aust	ralia	Jap	an	Korea		Samoa	
	M	F	M	F	M	F	M	F
modATPIII 3 components								
WC + TG + HDL	0.8	1.7	0.04	0.4	0.01	2.7	0.7	1.7
WC + TG + BP	2.4	2.8	0	0	0.1	1.4	0.5	0.5
WC + TG + FPG	1.0	0.7	0.1	0.1	0	0.3	1.2	0.6
WC + HDL + BP	0.7	1.3	0	8.0	0.1	2.6	2.0	4.6
WC + HDL + FPG	0.4	0.9	0	0.4	0.01	0.3	3.6	10.5
WC + BP + FPG	5.4	4.5	0	0.9	0.3	0.9	6.9	7.7
TG + HDL + BP	1.6	1.0	1.4	1.8	3.7	3.8	0	0.2
TG + HDL + FPG	1.7	0.5	2.0	0.6	1.8	1.0	1.6	0.5
TG + BP + FPG	4.7	1.1	3.3	0.6	3.7	0.4	0.8	0.2
HDL + BP + FPG	0.8	0.4	0.7	2.7	0.5	0.6	1.9	1.4
4 components								
WC + TG + HDL + BP	1.8	2.4	0.01	0.6	0.1	3.8	0.5	2.2
WC + TG + HDL + FPG	1.4	1.1	0.3	0.1	0.01	0.8	3.2	3.7
WC + TG + BP + FPG	5.3	3.2	0	0	0.2	0.5	2.7	1.5
WC + HDL + BP + FPG	1.1	1.7	0	0.3	0.03	0.8	6.1	12.7
TG + HDL + BP + FPG	2.4	0.9	1.5	0.9	1.9	1.2	1.4	0.7
5 components								
WC + TG + HDL + BP + FPG	4.3	4.3	0	0.1	0.2	1.7	6.2	8.7
Prevalence of MetS	35.8	28.5	9.4	10.3	12.7	22.8	39.3	57.2
in a second								

Lee CMY et al. Diab Res Clin Prac 2008;81:377-80.

Metabolic Syndrome and Cardiovascular Risk

- Metabolic syndrome was associated with an increased risk of
- CVD (RR: 2.35, 95% CI: 2.02 2.73),
- CVD mortality (RR: 2.40, 95% CI: 1.87 3.08),
- All-cause mortality (RR: 1.58, 95% CI: 1.39 1.78),
- Myocardial infarction (RR: 1.99; 95% CI: 1.61 -2.46),
- Stroke (RR: 2.27; 95% CI: 1.80 to 2.85).


Comparison group vs. absence	HR (95% CI)	HR (95% CI)
Definitions of the metabolic syndrome		
Updated ATP III	2.41 (1.67-3.51)	1.60 (1.23-2.09)
IDF	2.14 (1.39-3.28)	1.39 (1.01-1.91)
Qualifying sets of components		
Central obesity, high TG, and low HDL	2.12 (1.21-3.74)	1.27 (0.81-1.98)
Central obesity, high TG, and high BP	2.31 (1.37-3.91)	1.58 (1.08-2.32)
Central obesity, high TG, and high FPG	3.05 (1.56-5.95)	2.20 (1.37-3.54)
Central obesity, low HDL, and high FPG	4.24 (2.08-8.64)	1.98 (1.10-3.59)
Central obesity, low HDL, and high BP	2.45 (1.34-4.48)	1.26 (0.76-2.09)
Central obesity, high BP, and high FPG	4.35 (2.38-7.96)	2.19 (1.34-3.58)
High TG, low HDL, and high BP	2.57 (1.59-4.13)	1.66 (1.17-2.36)
High TG, low HDL, and high FPG	2.93 (1.55-5.53)	1.83 (1.13-2.97)
High TG, high BP, and high FPG	3.16 (1.77-5.63)	2.09 (1.38-3.19)
Low HDL, high BP, and high FPG	4.60 (2.53-8.36)	1.93 (1.14-3.28)
Central obesity, high TG, high FPG, and low HDL	4.01 (1.82-8.84)	1.87 (0.95-3.68)
Central obesity, high TG, high BP, and low HDL	2.25 (1.15-4.41)	1.38 (0.81-2.35)
Central obesity, high TG, high BP, and high FPG	3.92 (1.94-7.92)	2.13 (1.21-3.76)
Central obesity, high BP, high FPG, and low HDL	5.98 (2.80-12.75)	2.01 (0.98-4.13)
High TG, high BP, high FPG, and low HDL	4.39 (2.19-8.83)	2.16 (1.20-3.88)
Central obesity, high TG, high BP, high FPG, and low HDL	5.61 (2.39-13.14)	2.00 (0.88-4.55)
Each component adjusted for all others		
High TG	0.96 (0.65–1.41)	1.01 (0.78–1.30)
Low HDL	1.30 (0.88–1.91)	1.13 (0.87-1.47)
High BP	2.15 (1.47-3.15)	1.47 (1.15–1.88)
Central obesity	1.45 (0.96-2.20)	1.03 (0.76-1.39)
High FPG	1.67 (1.11–2.51)	1.57 (1.19–2.07)

Tanomsup S, et al. Diabetes Care. 2007;30:2138-40.

HR (95% CI) for all-cause mortality ass. With MetS components

B NCEP-R

Adjusted for age, sex, current smoking status, LDL cholesterol levels, declared physical activity, and socioprofessional category

Diabetes Care 30:2381-2387, 2007

Objectives

 Determine prevalence of metabolic syndrome and its components by sex, age group, urban/rural areas and regions among Thai adults.

Sample

- Sample from NHES4, Noninstitutionalized of registered population
- Multi-stage random sampling of 20 000 individuals age 20+ yr
- 5 provinces / regions + Bangkok = 21 provinces

NHES procedure

- Ascertain selected individuals at their household to ask for permission and consent
- Interview and examination at local health centers, schools or temples in the community
 - Blood pressure measurement
 - Anthropometry
 - Blood samples,
- Administered by trained personnel

Definition: Metabolic Syndrome

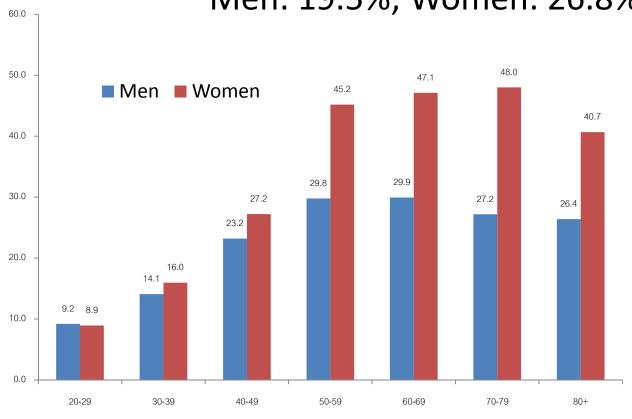
- Waist circumference:
 - Men ≥90 cm, Women≥80 cm
- Triglycerides >150 mg/dL
- HDL cholesterol:
 - Men<40 mg/dL</p>
 - Women<50 mg/dL
- Blood pressure ≥130/85 mm Hg
- Fasting glucose >100 mg/dL*

Results

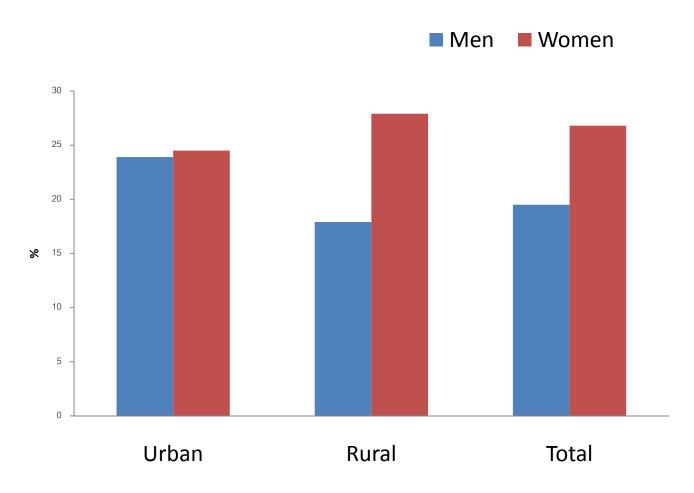
Means of selected metabolic risk factors

		N	⁄len		Women					
	Urk	oan	Rı	ural	Ur	ban	Rural			
	Absent	Present	Absent	Present	Absent	Present	Absent	Present		
	n=3414	n=1404	n=3398	n=937	n=3604	n=2031	n=2888	n=1580		
Age (yr)	45.6	51.0 a,c	44.0	49.3 a,d	45.1	54.1 b,c	43.1	52.1 b,d		
SBP (mmHg)	122.6	135.7 a,c	121.0	133.7 a,d	115.8	128.6 ^c 78.6 ^c 28.8 ^{b,c} 90.0 ^{b,c}	115.8 71.6 23.0 75.4	129.7 ^d 79.8 ^d 27.4 ^b 87.1 ^{b,d}		
DBP (mmHg)	76.9	85.7 a,c	74.6	82.9 a,d	71.7					
BMI (kg/m²)	23.0	28.8 a,c	22.1	28.0 a	23.8					
Waist (cm)	80.0	96.1 a,c	76.3	92.7 a,d	77.2					
FPG (mg/dL)	87.5	109.1 a,c	85.9	106.3 a	84.4	105.1 b,c	84.7	99.4 b		
HDL (mg/dL)	48.9	39.3 a,c	46.6	36.6 a,d	53.9	41.9 b,c	50.0	42.3 b,d		
TG (mg/dL)	137.1	257.5 a,c	148.4	282.5 a,d	104.8	194.3 b,c	117.8	207.0 b,d		

^{*}Age-adjusted: direct adjustment using Thai registered population 2008 a Statistically significant difference between men in urban and rural areas at P<0.05 b Statistically significant difference between women in urban and rural areas at P<0.05 c Statistically significant difference between men and women in urban area at P<0.05 d Statistically significant difference between men and women in rural area at P<0.05 BMC Public Health. 2011:10;11:854

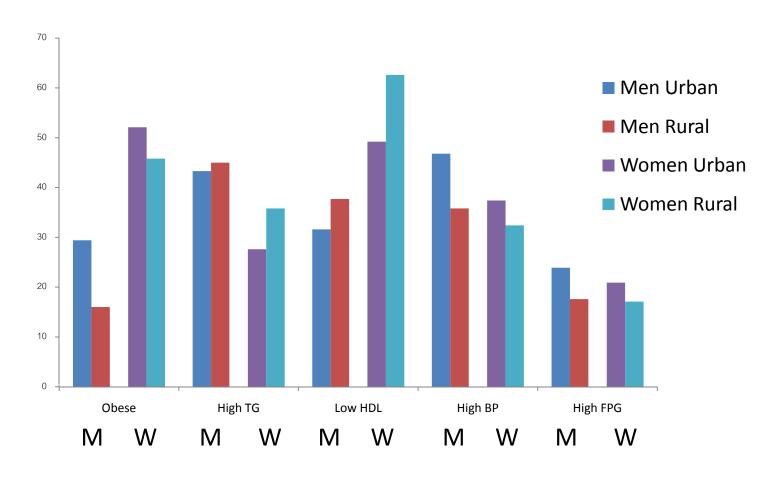

		Me	en		Women					
	Urk	oan	Ru	ral	Url	ban	Rural			
	Absent n=3414	Present n=1404	Absent n=3398	Present n=937	Absent n=3604	Present n=2031	Absent n=2888	Present n=1580		
Educational I	evel (%)									
< high school	58.0	61.7 ^{a,c}	78.7	77.4 a,d	61.9	61.9 76.7 b,c		88.4 b,d		
Leisure time	physical ac	tivity								
(min/week) (%)									
<150	67.2	73.9	73.7	70.6 ^d	79.6	80.1	83.1	81.2 ^d		
Regular smok	king (%)									
Yes	35.2	30. 4 a,c	45.0	40.8 a,d	2.6	4.9 b,c	2.2	1.0 b,d		
Alcohol drink										
≥41 g/d men ≥21 g/d in			13.9	13.9 ^d	2.4	1.5 b,c	1.4	0.9 b,d		
women										

- *Age-adjusted: direct adjustment using Thai registered population 2008
- a Statistically significant difference between men in urban and rural areas at P<0.05
- b Statistically significant difference between women in urban and rural areas at P<0.05
- c Statistically significant difference between men and women in urban area at P<0.05
- d Statistically significant difference between men and women in rural area at P<0.05

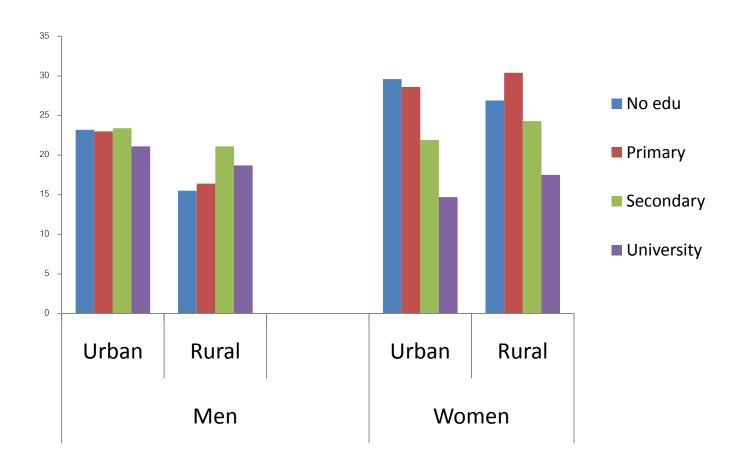

Age-specific prevalence of Metabolic syndrome in Thai adults aged≥20 yrs, NHES IV, 2009

Men: 19.5%; Women: 26.8%

Prevalence of Metabolic syndrome in Thai adults aged≥20 by sex

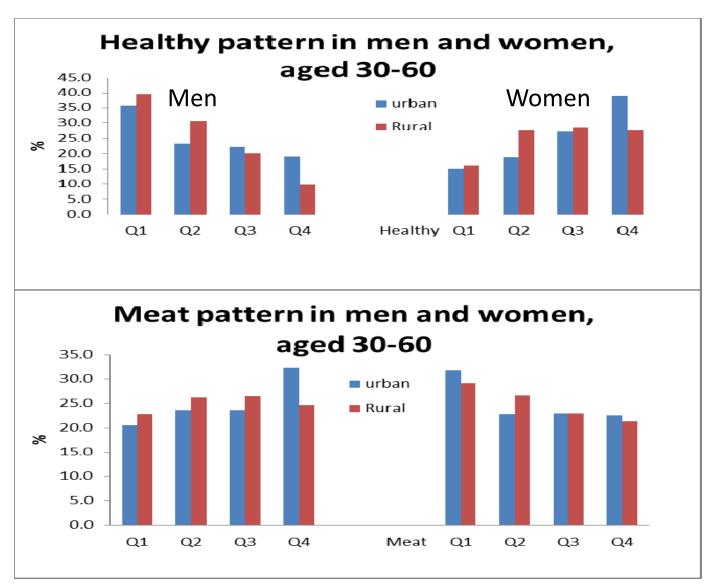


BMC Public Health. 2011:10;11(1):854


Prevalence of Mets component by sex and area of residence, NHES IV, 2009

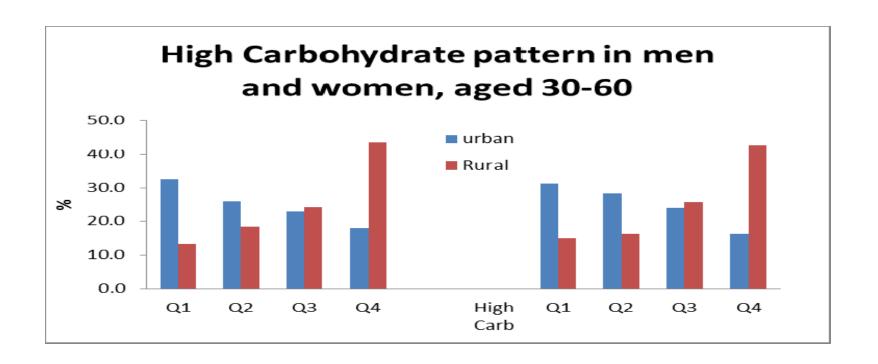
BMC Public Health. 2011:10;11:854

Education and Metabolic syndrome



Adjusted OR (95%CI) for factors associated with MetS

Factors	Male	Women
Age (yr)	1.05 (1.04, 1.06)	1.06 (1.05, 1.06)
Urban (rural as ref)	0.92 (0.79, 1.08)	0.70(0.61, 0.80)
Education < high school (≥higher as ref)	1.21 (1.03, 1.41)	1.60 (1.33, 1.93)
Smoking (no as ref)	1.13 (0.97, 1.33)	1.05 (0.62, 1.79)
Alc drink ≥40 g/d men/≥20 gm/d women vs less	1.52 (1.19, 1.94)	1.02 (0.69, 1.51)
Leisure time PA <150 min vs ≥ 150 as ref.)	1.16 (0.98, 1.37)	0.92 (0.79, 1.06)
BMI (per kg/m2)	1.48 (1.44, 1.51)	1.26 (1.23, 1.29)



Dietary pattern

Dietary pattern

Summary

- Prevalence Mets:
 - Men: 19.5% (Urban: 23.1% vs Rural: 17.9%)
 - Women: 26.8% (Urban: 24.5% vs Rural: 27.9%)
- The most common combinations
 - Men: HDL + TG+ BP (urban: 3.4% vs. rural: 3.9%)
 - Women: HDL + TG + Obese (urban: 3.9% vs rural: 5.9%)
 - Urban > Rural
 - Men: BP +WC+ (TG, FG, HDL), 5 components
 - Women: FG+WC+HDL, 5 components
 - Rural > Urban
 - Men: HDL+TG+BP, HDL+TG+BP+FG
 - Women: HDL+ TG +Obese, HDL+TG+BP, HDL+TG+Obese+BP

Table 4. Age-Standardized Prevalence (Standard Error) of Participants With All Possible Combinations of MetS Components

		М	en (n = 2093)	Women (n = 3212)			
Combination of MetS	Total	Urban	Rural	Total	Urban	Rural	Total	
HDL_HTG_HG	2.8 (0.4)	3.2 (1.1)	4.3 (0.9)	3.9 (0.7) ^a	1.2 (0.3)	1.7 (0.5)	1.5 (0.3)	
HDL_HTG_HBP	2.8 (0.5)	1.4 (0.4) ^b	4.5 (1.2)	3.6 (0.9)	0.6 (0.3) ^b	2.5 (0.7)	1.9 (0.5)	
HDL_HG_HBP	0.6 (0.1)	0.4 (0.1)	0.7 (0.2)	0.6 (0.2)	0.8 (0.2)	0.5 (0.2)	0.6 (0.1)	
HTG_HG_HBP	1.3 (0.3)	3.0 (0.7)	2.3 (0.8)	$2.5 (0.6)^a$	0.4 (0.1) ^b	0.0	0.1 (0.1)	
O_HDL_HTG	4.3 (0.7)	1.6 (0.5)	2.0 (0.8)	$1.9 (0.6)^{a}$	4.7 (1.2)	7.6 (1.7)	6.6 (1.2)	
O_HDL_HG	2.2 (0.4)	0.5 (0.3)	1.2 (0.6)	$1.0 (0.4)^{a}$	3.8 (0.5)	3.1 (1.0)	3.4 (0.7)	
O_HDL_HBP	2.1 (0.3)	1.3 (0.3)	0.4 (0.3)	$0.6 (0.2)^a$	2.7 (0.4)	4.0 (0.7)	3.6 (0.5)	
O_HTG_HG	0.5 (0.1)	0.9 (0.3)	0.4 (0.2)	0.5 (0.2)	1.0 (0.2) ^c	0.3 (0.1)	0.5 (0.1)	
O-TG_HBP	0.8 (0.2)	2.3 (0.7) ^b	0.6 (0.5)	1.2 (0.4)	0.4 (0.2)	0.6 (0.3)	0.5 (0.2)	
O_HG_HBP	1.6 (0.2)	3.6 (0.6) ^d	1.1 (0.4)	1.9 (0.4)	3.5 (0.6) ^d	0.3 (0.2)	1.3 (0.3)	
O_HDL_HTG_HG	3.0 (0.3)	1.4 (0.4)	2.1 (0.7)	$1.9 (0.5)^a$	5.4 (0.9)	3.6 (0.5)	4.2 (0.5)	
O_HDL_HG_HBP	1.5 (0.2)	1.8 (0.5) ^b	0.5 (0.3)	0.9 (0.3)°	2.9 (0.5)	1.8 (0.5)	2.2 (0.4)	
O_HDL_HTG_HBP	2.7 (0.3)	2.5 (0.5) ^b	1.2 (0.4)	1.6 (0.4) ^a	2.3 (0.4) ^b	4.5 (0.8)	3.8 (0.6)	
O_HTG_HG_HBP	1.4 (0.3)	3.3 (0.8) ^b	1.3 (0.6)	1.9 (0.5)	2.1 (0.3) ^d	0.4 (0.2)	0.9 (0.2)	
HDL_HTG_HG_HBP	1.5 (0.2)	2.1 (0.5)	1.8 (0.4)	1.9 (0.4) ^a	1.8 (0.2) ^b	0.6 (0.1)	1.0 (0.2)	
O_HDL_HTG_HG_HBP	3.5 (0.4)	3.9 (0.5) ^b	2.1 (0.6)	2.7 (0.5)°	4.4 (0.6)	4.3 (0.9)	4.3 (0.7)	

Abbreviations: MetS, metabolic syndrome; HDL, low high-density lipoprotein cholesterol (<40 mg/dL in men or <50 mg/dL in women); HTG, high triglycerides (\geq 150 mg/dL or on treatment); HG, hyperglycemia (fasting plasma glucose \geq 100 mg/dL and diabetes); HBP, high blood pressure (systolic BP \geq 130 mm Hg and/or diastolic BP \geq 90 mm Hg; O, abdominal obesity (waist circumference \geq 90 cm in men and \geq 80 cm in women).

Asia Pac J Public Health 2011 23: 792

MetS, a heterogeneous group of MetS component

Table 1 – Age-adjusted prevalence (%) of metabolic syndrome components and their combinations with the modATPIII definition and in those with abdominal obesity with the IDF definition by sex and study population

nterAsia

Combinations of MetS components Thai U			C	Australia		Japan		Korea		Sam	noa M F		
		M	' F	M	S F	М	F	М	F	M	F	M	F
	modATPIII 3 components												
	WC + TG + HDL	2.3	5.4	2.2	4.2	0.8	1.7	0.04	0.4	0.01	2.7	0.7	_{1.7} 1.9 6.6
	WC + TG + BP	1.7	1.3	1.4	1.9	2.4	2.8	0	0	0.1	1.4	0.5	0.5
	WC + TG + FPG					1.0	0.7	0.1	0.1	0	0.3	1.2	0.6
	WC + HDL + BP					0.7	1.3	0	0.8	0.1	2.6	2.0	4.6
	WC + HDL + FPG					0.4	0.9	0	0.4	0.01	0.3	3.6	10.5
	WC + BP + FPG					5.4	4.5	0	0.9	0.3	0.9	6.9	7.7
	TG + HDL + BP	4.1	2.4	4.8	1.0	1.6	1.0	1.4	1.8	3.7	3.8	0	0.2 3.6 1.9
	TG + HDL + FPG					1.7	0.5	2.0	0.6	1.8	1.0	1.6	0.5
	TG + BP + FPG					4.7	1.1	3.3	0.6	3.7	0.4	0.8	0.2
	HDL + BP + FPG					0.8	0.4	0.7	2.7	0.5	0.6	1.9	1.4
	4 components												
	WC + TG + HDL + BP	2.5	4.6	3.6	2.8	1.8	2.4	0.01	0.6	0.1	3.8	0.5	2.2 1.6 3.8
	WC + TG + HDL + FPG					1.4	1.1	0.3	0.1	0.01	0.8	3.2	3.7
	WC + TG + BP + FPG					5.3	3.2	0	0	0.2	0.5	2.7	1.5
	WC + HDL + BP + FPG					1.1	1.7	0	0.3	0.03	8.0	6.1	12.7
	TG + HDL + BP + FPG					2.4	0.9	1.5	0.9	1.9	1.2	1.4	0.7
	5 components												
	WC + TG + HDL + BP + FP	G 1.7	7 3.0	3.6	3.0	4.3	4.3	0	0.1	0.2	1.7	6.2	8.7 2.7 4.3
0	Prevalence of MetS					35.8	28.5	9.4	10.3	12.7	22.8	39.3	57.2
	Net See Land												

Lee CMY et al. Diab Res Clin Prac 2008;81:377-80. Diabetes Care 33:2457-2461, 2010

BMC Public Health. 2011:10;11:854

Asia Pac J Public Health 2011 23: 792

Discussion

- MetS in US 2003-6: Men: 41.9%, women:35.0%. (using WC criteria of ≥94 cm in men and ≥80 in women for White, African American, and other participants and ≥90 cm in men and ≥ 80 cm in women for Mexican American) (Journal of Diabetes 2 (2010) 180–193)
- MetS in Korea 2007: Male: 29.0% women: 32.9% (Diabetes Care 34:1323–1328,2011)
- The prevalence among aged≥35 was not significantly different from that of InterAsia (30.0%, men 24.7 women 34.9)
- The variation of Mets combination by urban/rural was consistent with findings from InterAsia study. (Asia Pac J Public Health 2011 23: 792)
- The common MetS by sex was consistent with NHANES: The most prevalent MetS combination (Diabetes Care 33:2457–2461, 2010)
 - Men: Low HDL + High TG + High BP
 - Women:Low HDL +High TG + Abd Obese
- The variations in components are likely to be related to life style.
- Dyslipidemia is more common in rural areas.
- Management of obesity and dyslipidemia should be strengthen.

Acknowledgement

http://www.nheso.or.th